Differential Manifolds and Theoretical Physics

Differential Manifolds and Theoretical Physics PDF Author:
Publisher: Academic Press
ISBN: 0080874355
Category : Mathematics
Languages : en
Pages : 417

Get Book Here

Book Description
Differential Manifolds and Theoretical Physics

Differential Manifolds and Theoretical Physics

Differential Manifolds and Theoretical Physics PDF Author:
Publisher: Academic Press
ISBN: 0080874355
Category : Mathematics
Languages : en
Pages : 417

Get Book Here

Book Description
Differential Manifolds and Theoretical Physics

Differentiable Manifolds

Differentiable Manifolds PDF Author: Gerardo F. Torres del Castillo
Publisher: Springer Nature
ISBN: 3030451933
Category : Mathematics
Languages : en
Pages : 447

Get Book Here

Book Description
This textbook delves into the theory behind differentiable manifolds while exploring various physics applications along the way. Included throughout the book are a collection of exercises of varying degrees of difficulty. Differentiable Manifolds is intended for graduate students and researchers interested in a theoretical physics approach to the subject. Prerequisites include multivariable calculus, linear algebra, and differential equations and a basic knowledge of analytical mechanics.

Differential Geometry and Mathematical Physics

Differential Geometry and Mathematical Physics PDF Author: Gerd Rudolph
Publisher: Springer Science & Business Media
ISBN: 9400753454
Category : Science
Languages : en
Pages : 766

Get Book Here

Book Description
Starting from an undergraduate level, this book systematically develops the basics of • Calculus on manifolds, vector bundles, vector fields and differential forms, • Lie groups and Lie group actions, • Linear symplectic algebra and symplectic geometry, • Hamiltonian systems, symmetries and reduction, integrable systems and Hamilton-Jacobi theory. The topics listed under the first item are relevant for virtually all areas of mathematical physics. The second and third items constitute the link between abstract calculus and the theory of Hamiltonian systems. The last item provides an introduction to various aspects of this theory, including Morse families, the Maslov class and caustics. The book guides the reader from elementary differential geometry to advanced topics in the theory of Hamiltonian systems with the aim of making current research literature accessible. The style is that of a mathematical textbook,with full proofs given in the text or as exercises. The material is illustrated by numerous detailed examples, some of which are taken up several times for demonstrating how the methods evolve and interact.

Differential Geometry For Physicists

Differential Geometry For Physicists PDF Author: Bo-yu Hou
Publisher: World Scientific Publishing Company
ISBN: 9813105097
Category : Science
Languages : en
Pages : 561

Get Book Here

Book Description
This book is divided into fourteen chapters, with 18 appendices as introduction to prerequisite topological and algebraic knowledge, etc. The first seven chapters focus on local analysis. This part can be used as a fundamental textbook for graduate students of theoretical physics. Chapters 8-10 discuss geometry on fibre bundles, which facilitates further reference for researchers. The last four chapters deal with the Atiyah-Singer index theorem, its generalization and its application, quantum anomaly, cohomology field theory and noncommutative geometry, giving the reader a glimpse of the frontier of current research in theoretical physics.

An Introduction to Differential Manifolds

An Introduction to Differential Manifolds PDF Author: Jacques Lafontaine
Publisher: Springer
ISBN: 3319207350
Category : Mathematics
Languages : en
Pages : 408

Get Book Here

Book Description
This book is an introduction to differential manifolds. It gives solid preliminaries for more advanced topics: Riemannian manifolds, differential topology, Lie theory. It presupposes little background: the reader is only expected to master basic differential calculus, and a little point-set topology. The book covers the main topics of differential geometry: manifolds, tangent space, vector fields, differential forms, Lie groups, and a few more sophisticated topics such as de Rham cohomology, degree theory and the Gauss-Bonnet theorem for surfaces. Its ambition is to give solid foundations. In particular, the introduction of “abstract” notions such as manifolds or differential forms is motivated via questions and examples from mathematics or theoretical physics. More than 150 exercises, some of them easy and classical, some others more sophisticated, will help the beginner as well as the more expert reader. Solutions are provided for most of them. The book should be of interest to various readers: undergraduate and graduate students for a first contact to differential manifolds, mathematicians from other fields and physicists who wish to acquire some feeling about this beautiful theory. The original French text Introduction aux variétés différentielles has been a best-seller in its category in France for many years. Jacques Lafontaine was successively assistant Professor at Paris Diderot University and Professor at the University of Montpellier, where he is presently emeritus. His main research interests are Riemannian and pseudo-Riemannian geometry, including some aspects of mathematical relativity. Besides his personal research articles, he was involved in several textbooks and research monographs.

Smooth Manifolds and Fibre Bundles with Applications to Theoretical Physics

Smooth Manifolds and Fibre Bundles with Applications to Theoretical Physics PDF Author: Steinar Johannesen
Publisher: CRC Press
ISBN: 1315342626
Category : Mathematics
Languages : en
Pages : 595

Get Book Here

Book Description
This book provides a systematic presentation of the mathematical foundation of modern physics with applications particularly within classical mechanics and the theory of relativity. Written to be self-contained, Smooth Manifolds and Fibre Bundles with Applications to Theoretical Physics provides complete and rigorous proofs of all the results presented within. Among the themes illustrated in the book are differentiable manifolds, differential forms, fiber bundles and differential geometry with non-trivial applications especially within the general theory of relativity. The emphasis is upon a systematic and logical construction of the mathematical foundations. It can be used as a textbook for a pure mathematics course in differential geometry, assuming the reader has a good understanding of basic analysis, linear algebra and point set topology. The book will also appeal to students of theoretical physics interested in the mathematical foundation of the theories.

Modern Differential Geometry for Physicists

Modern Differential Geometry for Physicists PDF Author: Chris J. Isham
Publisher: Allied Publishers
ISBN: 9788177643169
Category : Geometry, Differential
Languages : en
Pages : 308

Get Book Here

Book Description


Differential Manifolds: A Basic Approach For Experimental Physicists

Differential Manifolds: A Basic Approach For Experimental Physicists PDF Author: Paul Baillon
Publisher: World Scientific Publishing Company
ISBN: 981444958X
Category : Science
Languages : en
Pages : 593

Get Book Here

Book Description
Differential Manifold is the framework of particle physics and astrophysics nowadays. It is important for all research physicists to be well accustomed to it and even experimental physicists should be able to manipulate equations and expressions in that framework.This book gives a comprehensive description of the basics of differential manifold with a full proof of any element. A large part of the book is devoted to the basic mathematical concepts in which all necessary for the development of the differential manifold is expounded and fully proved.This book is self-consistent: it starts from first principles. The mathematical framework is the set theory with its axioms and its formal logic. No special knowledge is needed.

Differential Geometry and Lie Groups for Physicists

Differential Geometry and Lie Groups for Physicists PDF Author: Marián Fecko
Publisher: Cambridge University Press
ISBN: 1139458035
Category : Science
Languages : en
Pages : 11

Get Book Here

Book Description
Covering subjects including manifolds, tensor fields, spinors, and differential forms, this textbook introduces geometrical topics useful in modern theoretical physics and mathematics. It develops understanding through over 1000 short exercises, and is suitable for advanced undergraduate or graduate courses in physics, mathematics and engineering.

Analysis and Algebra on Differentiable Manifolds: A Workbook for Students and Teachers

Analysis and Algebra on Differentiable Manifolds: A Workbook for Students and Teachers PDF Author: P.M. Gadea
Publisher: Springer Science & Business Media
ISBN: 9048135648
Category : Mathematics
Languages : en
Pages : 446

Get Book Here

Book Description
A famous Swiss professor gave a student’s course in Basel on Riemann surfaces. After a couple of lectures, a student asked him, “Professor, you have as yet not given an exact de nition of a Riemann surface.” The professor answered, “With Riemann surfaces, the main thing is to UNDERSTAND them, not to de ne them.” The student’s objection was reasonable. From a formal viewpoint, it is of course necessary to start as soon as possible with strict de nitions, but the professor’s - swer also has a substantial background. The pure de nition of a Riemann surface— as a complex 1-dimensional complex analytic manifold—contributes little to a true understanding. It takes a long time to really be familiar with what a Riemann s- face is. This example is typical for the objects of global analysis—manifolds with str- tures. There are complex concrete de nitions but these do not automatically explain what they really are, what we can do with them, which operations they really admit, how rigid they are. Hence, there arises the natural question—how to attain a deeper understanding? One well-known way to gain an understanding is through underpinning the d- nitions, theorems and constructions with hierarchies of examples, counterexamples and exercises. Their choice, construction and logical order is for any teacher in global analysis an interesting, important and fun creating task.