Liganded silver and gold quantum clusters. Towards a new class of nonlinear optical nanomaterials

Liganded silver and gold quantum clusters. Towards a new class of nonlinear optical nanomaterials PDF Author: Rodolphe Antoine
Publisher: Springer
ISBN: 3319647431
Category : Technology & Engineering
Languages : en
Pages : 89

Get Book Here

Book Description
Metallic quantum clusters belonging to intermediate size regime between two and few hundred of atoms, represent unique building blocks of new materials. Nonlinear optical (NLO) characteristics of liganded silver and gold quantum clusters reveal remarkable features which can be tuned by size, structure and composition. The two-photon absorption cross sections of liganded noble metal quantum clusters are several orders of magnitude larger than that of commercially-available dyes. Therefore, the fundamental photophysical understanding of those two-photon processes in liganded clusters with few metal atoms deserve special attention, in particularly in context of finding the mechanisms responsible for these properties. A broad range of state-of-the-art experimental methods to determine nonlinear optical properties (i.e. two-photon absorption, two-photon excited fluorescence and second harmonic generation) of quantum clusters are presented. The experimental setup and underlying physical concepts are described. Furthermore, the theoretical models and corresponding approaches are used allowing to explain the experimental observations and simultaneously offering the possibility to deduce the key factors necessary to design new classes of nanoclusters with large NLO properties. Additionally, selected studied cases of liganded silver and gold quantum clusters with focus on their NLO properties will be presented as promising candidates for applications in imaging techniques such as fluorescence microscopy or Second-Harmonic Generation microscopy.

Liganded silver and gold quantum clusters. Towards a new class of nonlinear optical nanomaterials

Liganded silver and gold quantum clusters. Towards a new class of nonlinear optical nanomaterials PDF Author: Rodolphe Antoine
Publisher: Springer
ISBN: 3319647431
Category : Technology & Engineering
Languages : en
Pages : 89

Get Book Here

Book Description
Metallic quantum clusters belonging to intermediate size regime between two and few hundred of atoms, represent unique building blocks of new materials. Nonlinear optical (NLO) characteristics of liganded silver and gold quantum clusters reveal remarkable features which can be tuned by size, structure and composition. The two-photon absorption cross sections of liganded noble metal quantum clusters are several orders of magnitude larger than that of commercially-available dyes. Therefore, the fundamental photophysical understanding of those two-photon processes in liganded clusters with few metal atoms deserve special attention, in particularly in context of finding the mechanisms responsible for these properties. A broad range of state-of-the-art experimental methods to determine nonlinear optical properties (i.e. two-photon absorption, two-photon excited fluorescence and second harmonic generation) of quantum clusters are presented. The experimental setup and underlying physical concepts are described. Furthermore, the theoretical models and corresponding approaches are used allowing to explain the experimental observations and simultaneously offering the possibility to deduce the key factors necessary to design new classes of nanoclusters with large NLO properties. Additionally, selected studied cases of liganded silver and gold quantum clusters with focus on their NLO properties will be presented as promising candidates for applications in imaging techniques such as fluorescence microscopy or Second-Harmonic Generation microscopy.

Atomically Precise Nanoclusters

Atomically Precise Nanoclusters PDF Author: Rongchao Jin
Publisher: CRC Press
ISBN: 1000246396
Category : Science
Languages : en
Pages : 346

Get Book Here

Book Description
The primary goal of nanotechnology is to achieve nanoscale materials and devices with atomic precision. Toward this goal, breakthroughs have recently been made in the solution-phase synthesis and applications of atomically precise nanoclusters. This book presents the exciting progress in this new research field. The chapters are contributed by leading experts of the field and cover the synthetic methods, atomic structures, electronic and optical properties, and catalytic applications of noble metal nanoclusters. Such new nanocluster materials offer exciting opportunities for chemists and physicists to understand the fundamental science of nanoclusters, especially the atomic-level structure–property correlation and design of new materials, as well as for developing a range of applications including catalysis, biomedicine, sensing, imaging, optics, and energy conversion. The book will be of interest to readers and researchers in nanotechnology, nanochemistry, catalysis, and computational chemistry, as well as practitioners in industry R&D for new materials. It is written to be accessible to undergraduate and graduate students and, therefore, is an excellent teaching material.

Molecular Spectroscopy—Experiment and Theory

Molecular Spectroscopy—Experiment and Theory PDF Author: Andrzej Koleżyński
Publisher: Springer
ISBN: 3030013553
Category : Science
Languages : en
Pages : 529

Get Book Here

Book Description
This book reviews various aspects of molecular spectroscopy and its application in materials science, chemistry, physics, medicine, the arts and the earth sciences. Written by an international group of recognized experts, it examines how complementary applications of diverse spectroscopic methods can be used to study the structure and properties of different materials. The chapters cover the whole spectrum of topics related to theoretical and computational methods, as well as the practical application of spectroscopic techniques to study the structure and dynamics of molecular systems, solid-state crystalline and amorphous materials, surfaces and interfaces, and biological systems. As such, the book offers an invaluable resource for all researchers and postgraduate students interested in the latest developments in the theory, experimentation, measurement and application of various advanced spectroscopic methods for the study of materials.

Nanostructured Materials for Biomedical Applications

Nanostructured Materials for Biomedical Applications PDF Author: Raji Vijayamma
Publisher: Elsevier
ISBN: 032390839X
Category : Technology & Engineering
Languages : en
Pages : 488

Get Book Here

Book Description
Nanostructured Materials for Biomedical Applications highlights progress, challenges and opportunities in nanomedicine and discusses novel engineering approaches of nanostructured materials that are useful in various biomedical applications. The book provides a comprehensive review of the state-of-the-art in bio-nanotechnology, with an emphasis on diverse biomedical applications, such as in drug delivery, bioimaging, hyperthermia and targeted cancer therapy. Users will find this to be a broad introductory reference for anyone new to the field or those who wish to gain a thorough overview of nanostructured materials in the context of biomedical applications. The breadth of this book will appeal to an interdisciplinary audience, including materials scientists, pharmaceutical scientists and biomedical engineers. Covers a range of nanomaterial types, including metal nanoparticles, luminescent nanoparticles, cubosomes, smart nanostructures, and much more Reviews the diverse applications of nanomaterials in biomedicine, such as in theranostics, biosensing, cancer therapy, drug delivery and tissue engineering Provides a concise, introductory reference for those new to the fields of bionanomaterials and bio-nanotechnology

Quantum Mechanical/Molecular Mechanical Approaches for the Investigation of Chemical Systems – Recent Developments and Advanced Applications

Quantum Mechanical/Molecular Mechanical Approaches for the Investigation of Chemical Systems – Recent Developments and Advanced Applications PDF Author: Thomas S. Hofer
Publisher: Frontiers Media SA
ISBN: 2889456269
Category :
Languages : en
Pages : 188

Get Book Here

Book Description
The QM/MM method, short for quantum mechanical/molecular mechanical, is a highly versatile approach for the study of chemical phenomena, combining the accuracy of quantum chemistry to describe the region of interest with the efficiency of molecular mechanical potentials to represent the remaining part of the system. Originally conceived in the 1970s by the influential work of the the Nobel laureates Martin Karplus, Michael Levitt and Arieh Warshel, QM/MM techniques have evolved into one of the most accurate and general approaches to investigate the properties of chemical systems via computational methods. Whereas the first applications have been focused on studies of organic and biomolecular systems, a large variety of QM/MM implementations have been developed over the last decades, extending the range of applicability to address research questions relevant for both solution and solid-state chemistry as well. Despite approaching their 50th anniversary in 2022, the formulation of improved QM/MM methods is still an active field of research, with the aim to (i) extend the applicability to address an even broader range of research questions in chemistry and related disciplines, and (ii) further push the accuracy achieved in the QM/MM description beyond that of established formulations. While being a highly successful approach on its own, the combination of the QM/MM strategy with other established theoretical techniques greatly extends the capabilities of the computational approaches. For instance the integration of a suitable QM/MM technique into the highly successful Monte-Carlo and molecular dynamics simulation protocols enables the description of the chemical systems on the basis of an ensemble that is in part constructed on a quantum-mechanical basis. This eBook presents the contributions of a recent Research Topic published in Frontiers in Chemistry, that highlight novel approaches as well as advanced applications of QM/MM method to a broad variety of targets. In total 2 review articles and 10 original research contributions from 48 authors are presented, covering 12 different countries on four continents. The range of research questions addressed by the individual contributions provide a lucid overview on the versatility of the QM/MM method, and demonstrate the general applicability and accuracy that can be achieved for different problems in chemical sciences. Together with the development of improved algorithms to enhance the capabilities of quantum chemical methods and the continuous advancement in the capacities of computational resources, it can be expected that the impact of QM/MM methods in chemical sciences will be further increased already in the near future.

Atomically Precise Metal Nanoclusters

Atomically Precise Metal Nanoclusters PDF Author: Zhikun Wu
Publisher: Springer Nature
ISBN: 3031023897
Category : Science
Languages : en
Pages : 129

Get Book Here

Book Description
Atomically precise metal nanocluster research has emerged as a new frontier. This book serves as an introduction to metal nanoclusters protected by ligands. The authors have summarized the synthesis principles and methods, the characterization methods and new physicochemical properties, and some potential applications. By pursuing atomic precision, such nanocluster materials provide unprecedented opportunities for establishing precise relationships between the atomic-level structures and the properties. The book should be accessible to senior undergraduate and graduate students, researchers in various fields (e.g., chemistry, physics, materials, biomedicine, and engineering), R&D scientists, and science policy makers.

Gold Clusters, Colloids and Nanoparticles I

Gold Clusters, Colloids and Nanoparticles I PDF Author: D. Michael P. Mingos
Publisher: Springer
ISBN: 3319078488
Category : Science
Languages : en
Pages : 287

Get Book Here

Book Description
The series Structure and Bonding publishes critical reviews on topics of research concerned with chemical structure and bonding. The scope of the series spans the entire Periodic Table and addresses structure and bonding issues associated with all of the elements. It also focuses attention on new and developing areas of modern structural and theoretical chemistry such as nanostructures, molecular electronics, designed molecular solids, surfaces, metal clusters and supramolecular structures. Physical and spectroscopic techniques used to determine, examine and model structures fall within the purview of Structure and Bonding to the extent that the focus is on the scientific results obtained and not on specialist information concerning the techniques themselves. Issues associated with the development of bonding models and generalizations that illuminate the reactivity pathways and rates of chemical processes are also relevant. The individual volumes in the series are thematic. The goal of each volume is to give the reader, whether at a university or in industry, a comprehensive overview of an area where new insights are emerging that are of interest to a larger scientific audience. Thus each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years should be presented using selected examples to illustrate the principles discussed. A description of the physical basis of the experimental techniques that have been used to provide the primary data may also be appropriate, if it has not been covered in detail elsewhere. The coverage need not be exhaustive in data, but should rather be conceptual, concentrating on the new principles being developed that will allow the reader, who is not a specialist in the area covered, to understand the data presented. Discussion of possible future research directions in the area is welcomed. Review articles for the individual volumes are invited by the volume editors. Readership: research scientists at universities or in industry, graduate students Special offer For all customers who have a standing order to the print version of Structure and Bonding, we offer free access to the electronic volumes of the Series published in the current year via SpringerLink.

Characterization and Control of the Nonlinear Optical Properties of Dendritic Silver Nanoparticle Clusters

Characterization and Control of the Nonlinear Optical Properties of Dendritic Silver Nanoparticle Clusters PDF Author: Jess M. Gunn
Publisher:
ISBN: 9781124678719
Category : Dielectric films
Languages : en
Pages : 123

Get Book Here

Book Description


Optical Properties of Quantum-sized Gold and Silver Nanoclusters

Optical Properties of Quantum-sized Gold and Silver Nanoclusters PDF Author: Viraj Dhanushka Thanthirige
Publisher:
ISBN:
Category : Metal clusters
Languages : en
Pages : 270

Get Book Here

Book Description
Atomically precise quantum-sized gold and silver nanoclusters have gained enormous research attention as they show unique properties like discrete electronic transitions, superparamagnetism, greater catalytic activity, and enhanced linear and non-linear optical properties. These characteristics make them viable for applications in molecular electronics, catalysis and biological imaging. Among several characteristics, optical properties like electronic absorption, photoluminescence (PL) and exciton dynamics have been the focus of intense research in recent years. Although progress has been made exploring the optical properties, several important questions are yet to be understood, which include the influence of ligands, metal atom doping, mechanism of PL etc. To gain further insights into these phenomena, in this study, we used the power of temperature-dependent absorption, PL and ultrafast time-resolved spectroscopy. Firstly, core-gold/shell-gold electron-phonon interactions in bi-icosahedral Au25 clusters were studied via the use of temperature-dependent absorption and ultrafast time-resolved PL. The results show that the staple shell motif structure is important for understanding the electron phonon interaction and the coupling of core and shell-gold. The ligands that make up the shell-gold were altered and their influence on optical properties were studied; the results show that the chemical nature of ligands has minor effect on both steady-state and time-resolved optical properties. The influence of solvent on bi-Au25 clusters was studied and the results revealed that in protic solvents, solvent hydrogen bonds with axial Cl atoms and it alters the absorption at low temperatures. This result proves that the optical properties of quantum-sized gold clusters are similar to that of molecules, with subtle differences. Secondly, we focused on understanding the origins of PL in gold clusters. Our efforts revealed that the ligand to metal-metal charge transfer state is the reason for greater PL in glutathione-protected Au22 clusters. The results demonstrate that the rigidification of shell-gold enhances PL quantum yield as high as 60% was realized for tetraoctylammonium-passivated Au22 clusters. Rigidification of the shell-gold was shown to be the reason for enhancing PL in protein-passivated gold clusters. Another strategy involving fluorescence resonance energy-transfer from the dye to Au22 cluster was demonstrated as a viable path for achieving highly luminescent gold clusters in water. Detailed time-resolved measurements demonstrated that both energy and electron transfer pathways are prevalent in dye-functionalized gold clusters and it is important to overcome electron transfer deactivation to achieve enhanced energy transfer-assisted PL. Temperature-dependent and ultrafast time-resolved optical measurements on metal-doped gold and silver clusters revealed that the central metal atom alters both electron-phonon interactions as well as exciton lifetimes. Interestingly, the results of this study provided support for an Energy Gap Law developed to describe the non-radiative deactivation pathways in organometallics. Systematic size-dependence measurements were carried out on hexane-thiolate protected gold clusters and the energy gap law successfully predicted the dependence of exciton dynamics on the HOMO-LUMO energy gap. Moreover, optical measurements reveal the unique behavior of highly symmetric icosahedral Au144 clusters.

Non-Linear Optical Properties of Matter

Non-Linear Optical Properties of Matter PDF Author: Manthos G. Papadopoulos
Publisher: Springer Science & Business Media
ISBN: 1402048505
Category : Science
Languages : en
Pages : 676

Get Book Here

Book Description
This book assembles both theory and application in this field, to interest experimentalists and theoreticians alike. Part 1 is concerned with the theory and computing of non-linear optical (NLO) properties while Part 2 reviews the latest developments in experimentation. This book will be invaluable to researchers and students in academia and industry, particularlrly to anyone involved in materials science, theoretical and computational chemistry, chemical physics, and molecular physics.