Author: K. Okamoto
Publisher: Academic Press
ISBN: 1483257576
Category : Mathematics
Languages : en
Pages : 673
Book Description
Representations of Lie Groups, Kyoto, Hiroshima, 1986 contains the proceedings of a symposium on "Analysis on Homogeneous Spaces and Representations of Lie Groups" held on September 1-6, 1986 in Japan. The symposium provided a forum for discussing Lie groups and covered topics ranging from geometric constructions of representations to the irreducibility of discrete series representations for semisimple symmetric spaces. A classification theory of prehomogeneous vector spaces is also described. Comprised of 22 chapters, this volume first considers the characteristic varieties of certain modules over the enveloping algebra of a semisimple Lie algebra, such as highest weight modules and primitive quotients. The reader is then introduced to multiplicity one theorems for generalized Gelfand-Graev representations of semisimple Lie groups and Whittaker models for the discrete series. Subsequent chapters focus on Lie algebra cohomology and holomorphic continuation of generalized Jacquet integrals; the generalized Geroch conjecture; algebraic structures on virtual characters of a semisimple Lie group; and fundamental groups of semisimple symmetric spaces. The book concludes with an analysis of the boundedness of certain unitarizable Harish-Chandra modules. This monograph will appeal to students, specialists, and researchers in the field of pure mathematics.
Representations of Lie Groups, Kyoto, Hiroshima, 1986
Author: K. Okamoto
Publisher: Academic Press
ISBN: 1483257576
Category : Mathematics
Languages : en
Pages : 673
Book Description
Representations of Lie Groups, Kyoto, Hiroshima, 1986 contains the proceedings of a symposium on "Analysis on Homogeneous Spaces and Representations of Lie Groups" held on September 1-6, 1986 in Japan. The symposium provided a forum for discussing Lie groups and covered topics ranging from geometric constructions of representations to the irreducibility of discrete series representations for semisimple symmetric spaces. A classification theory of prehomogeneous vector spaces is also described. Comprised of 22 chapters, this volume first considers the characteristic varieties of certain modules over the enveloping algebra of a semisimple Lie algebra, such as highest weight modules and primitive quotients. The reader is then introduced to multiplicity one theorems for generalized Gelfand-Graev representations of semisimple Lie groups and Whittaker models for the discrete series. Subsequent chapters focus on Lie algebra cohomology and holomorphic continuation of generalized Jacquet integrals; the generalized Geroch conjecture; algebraic structures on virtual characters of a semisimple Lie group; and fundamental groups of semisimple symmetric spaces. The book concludes with an analysis of the boundedness of certain unitarizable Harish-Chandra modules. This monograph will appeal to students, specialists, and researchers in the field of pure mathematics.
Publisher: Academic Press
ISBN: 1483257576
Category : Mathematics
Languages : en
Pages : 673
Book Description
Representations of Lie Groups, Kyoto, Hiroshima, 1986 contains the proceedings of a symposium on "Analysis on Homogeneous Spaces and Representations of Lie Groups" held on September 1-6, 1986 in Japan. The symposium provided a forum for discussing Lie groups and covered topics ranging from geometric constructions of representations to the irreducibility of discrete series representations for semisimple symmetric spaces. A classification theory of prehomogeneous vector spaces is also described. Comprised of 22 chapters, this volume first considers the characteristic varieties of certain modules over the enveloping algebra of a semisimple Lie algebra, such as highest weight modules and primitive quotients. The reader is then introduced to multiplicity one theorems for generalized Gelfand-Graev representations of semisimple Lie groups and Whittaker models for the discrete series. Subsequent chapters focus on Lie algebra cohomology and holomorphic continuation of generalized Jacquet integrals; the generalized Geroch conjecture; algebraic structures on virtual characters of a semisimple Lie group; and fundamental groups of semisimple symmetric spaces. The book concludes with an analysis of the boundedness of certain unitarizable Harish-Chandra modules. This monograph will appeal to students, specialists, and researchers in the field of pure mathematics.
Lie Theory
Author: Jean-Philippe Anker
Publisher: Springer Science & Business Media
ISBN: 0817644261
Category : Mathematics
Languages : en
Pages : 183
Book Description
* Presents extensive surveys by van den Ban, Schlichtkrull, and Delorme of the recent progress in deriving the Plancherel theorem on reductive symmetric spaces * Well suited for both graduate students and researchers in semisimple Lie theory and neighboring fields, possibly even mathematical cosmology * Knowledge of basic representation theory of Lie groups as well as familiarity with semisimple Lie groups, symmetric spaces, and parabolic subgroups is required
Publisher: Springer Science & Business Media
ISBN: 0817644261
Category : Mathematics
Languages : en
Pages : 183
Book Description
* Presents extensive surveys by van den Ban, Schlichtkrull, and Delorme of the recent progress in deriving the Plancherel theorem on reductive symmetric spaces * Well suited for both graduate students and researchers in semisimple Lie theory and neighboring fields, possibly even mathematical cosmology * Knowledge of basic representation theory of Lie groups as well as familiarity with semisimple Lie groups, symmetric spaces, and parabolic subgroups is required
Cohomological Induction and Unitary Representations
Author: Anthony W. Knapp
Publisher: Princeton University Press
ISBN: 1400883938
Category : Mathematics
Languages : en
Pages : 969
Book Description
This book offers a systematic treatment--the first in book form--of the development and use of cohomological induction to construct unitary representations. George Mackey introduced induction in 1950 as a real analysis construction for passing from a unitary representation of a closed subgroup of a locally compact group to a unitary representation of the whole group. Later a parallel construction using complex analysis and its associated co-homology theories grew up as a result of work by Borel, Weil, Harish-Chandra, Bott, Langlands, Kostant, and Schmid. Cohomological induction, introduced by Zuckerman, is an algebraic analog that is technically more manageable than the complex-analysis construction and leads to a large repertory of irreducible unitary representations of reductive Lie groups. The book, which is accessible to students beyond the first year of graduate school, will interest mathematicians and physicists who want to learn about and take advantage of the algebraic side of the representation theory of Lie groups. Cohomological Induction and Unitary Representations develops the necessary background in representation theory and includes an introductory chapter of motivation, a thorough treatment of the "translation principle," and four appendices on algebra and analysis.
Publisher: Princeton University Press
ISBN: 1400883938
Category : Mathematics
Languages : en
Pages : 969
Book Description
This book offers a systematic treatment--the first in book form--of the development and use of cohomological induction to construct unitary representations. George Mackey introduced induction in 1950 as a real analysis construction for passing from a unitary representation of a closed subgroup of a locally compact group to a unitary representation of the whole group. Later a parallel construction using complex analysis and its associated co-homology theories grew up as a result of work by Borel, Weil, Harish-Chandra, Bott, Langlands, Kostant, and Schmid. Cohomological induction, introduced by Zuckerman, is an algebraic analog that is technically more manageable than the complex-analysis construction and leads to a large repertory of irreducible unitary representations of reductive Lie groups. The book, which is accessible to students beyond the first year of graduate school, will interest mathematicians and physicists who want to learn about and take advantage of the algebraic side of the representation theory of Lie groups. Cohomological Induction and Unitary Representations develops the necessary background in representation theory and includes an introductory chapter of motivation, a thorough treatment of the "translation principle," and four appendices on algebra and analysis.
Representations of Reductive Groups
Author: Avraham Aizenbud
Publisher: American Mathematical Soc.
ISBN: 1470442841
Category : Mathematics
Languages : en
Pages : 466
Book Description
This volume contains the proceedings of the Conference on Representation Theory and Algebraic Geometry, held in honor of Joseph Bernstein, from June 11–16, 2017, at the Weizmann Institute of Science and The Hebrew University of Jerusalem. The topics reflect the decisive and diverse impact of Bernstein on representation theory in its broadest scope. The themes include representations of p -adic groups and Hecke algebras in all characteristics, representations of real groups and supergroups, theta correspondence, and automorphic forms.
Publisher: American Mathematical Soc.
ISBN: 1470442841
Category : Mathematics
Languages : en
Pages : 466
Book Description
This volume contains the proceedings of the Conference on Representation Theory and Algebraic Geometry, held in honor of Joseph Bernstein, from June 11–16, 2017, at the Weizmann Institute of Science and The Hebrew University of Jerusalem. The topics reflect the decisive and diverse impact of Bernstein on representation theory in its broadest scope. The themes include representations of p -adic groups and Hecke algebras in all characteristics, representations of real groups and supergroups, theta correspondence, and automorphic forms.
Harmonic Analysis on Reductive Groups
Author: W. Barker
Publisher: Springer Science & Business Media
ISBN: 1461204550
Category : Mathematics
Languages : en
Pages : 395
Book Description
A conference on Harmonic Analysis on Reductive Groups was held at Bowdoin College in Brunswick, Maine from July 31 to August 11, 1989. The stated goal of the conference was to explore recent advances in harmonic analysis on both real and p-adic groups. It was the first conference since the AMS Summer Sym posium on Harmonic Analysis on Homogeneous Spaces, held at Williamstown, Massachusetts in 1972, to cover local harmonic analysis on reductive groups in such detail and to such an extent. While the Williamstown conference was longer (three weeks) and somewhat broader (nilpotent groups, solvable groups, as well as semisimple and reductive groups), the structure and timeliness of the two meetings was remarkably similar. The program of the Bowdoin Conference consisted of two parts. First, there were six major lecture series, each consisting of several talks addressing those topics in harmonic analysis on real and p-adic groups which were the focus of intensive research during the previous decade. These lectures began at an introductory level and advanced to the current state of research. Sec ond, there was a series of single lectures in which the speakers presented an overview of their latest research.
Publisher: Springer Science & Business Media
ISBN: 1461204550
Category : Mathematics
Languages : en
Pages : 395
Book Description
A conference on Harmonic Analysis on Reductive Groups was held at Bowdoin College in Brunswick, Maine from July 31 to August 11, 1989. The stated goal of the conference was to explore recent advances in harmonic analysis on both real and p-adic groups. It was the first conference since the AMS Summer Sym posium on Harmonic Analysis on Homogeneous Spaces, held at Williamstown, Massachusetts in 1972, to cover local harmonic analysis on reductive groups in such detail and to such an extent. While the Williamstown conference was longer (three weeks) and somewhat broader (nilpotent groups, solvable groups, as well as semisimple and reductive groups), the structure and timeliness of the two meetings was remarkably similar. The program of the Bowdoin Conference consisted of two parts. First, there were six major lecture series, each consisting of several talks addressing those topics in harmonic analysis on real and p-adic groups which were the focus of intensive research during the previous decade. These lectures began at an introductory level and advanced to the current state of research. Sec ond, there was a series of single lectures in which the speakers presented an overview of their latest research.
The Penrose Transform and Analytic Cohomology in Representation Theory
Author: Michael G. Eastwood
Publisher: American Mathematical Soc.
ISBN: 0821851764
Category : Mathematics
Languages : en
Pages : 274
Book Description
This book contains refereed papers presented at the AMS-IMS-SIAM Summer Research Conference on the Penrose Transform and Analytic Cohomology in Representation Theory held in the summer of 1992 at Mount Holyoke College. The conference brought together some of the top experts in representation theory and differential geometry. One of the issues explored at the conference was the fact that various integral transforms from representation theory, complex integral geometry, and mathematical physics appear to be instances of the same general construction, which is sometimes called the ``Penrose transform''. There is considerable scope for further research in this area, and this book would serve as an excellent introduction.
Publisher: American Mathematical Soc.
ISBN: 0821851764
Category : Mathematics
Languages : en
Pages : 274
Book Description
This book contains refereed papers presented at the AMS-IMS-SIAM Summer Research Conference on the Penrose Transform and Analytic Cohomology in Representation Theory held in the summer of 1992 at Mount Holyoke College. The conference brought together some of the top experts in representation theory and differential geometry. One of the issues explored at the conference was the fact that various integral transforms from representation theory, complex integral geometry, and mathematical physics appear to be instances of the same general construction, which is sometimes called the ``Penrose transform''. There is considerable scope for further research in this area, and this book would serve as an excellent introduction.
Symmetry: Representation Theory and Its Applications
Author: Roger Howe
Publisher: Springer
ISBN: 1493915908
Category : Mathematics
Languages : en
Pages : 562
Book Description
Nolan Wallach's mathematical research is remarkable in both its breadth and depth. His contributions to many fields include representation theory, harmonic analysis, algebraic geometry, combinatorics, number theory, differential equations, Riemannian geometry, ring theory, and quantum information theory. The touchstone and unifying thread running through all his work is the idea of symmetry. This volume is a collection of invited articles that pay tribute to Wallach's ideas, and show symmetry at work in a large variety of areas. The articles, predominantly expository, are written by distinguished mathematicians and contain sufficient preliminary material to reach the widest possible audiences. Graduate students, mathematicians, and physicists interested in representation theory and its applications will find many gems in this volume that have not appeared in print elsewhere. Contributors: D. Barbasch, K. Baur, O. Bucicovschi, B. Casselman, D. Ciubotaru, M. Colarusso, P. Delorme, T. Enright, W.T. Gan, A Garsia, G. Gour, B. Gross, J. Haglund, G. Han, P. Harris, J. Hong, R. Howe, M. Hunziker, B. Kostant, H. Kraft, D. Meyer, R. Miatello, L. Ni, G. Schwarz, L. Small, D. Vogan, N. Wallach, J. Wolf, G. Xin, O. Yacobi.
Publisher: Springer
ISBN: 1493915908
Category : Mathematics
Languages : en
Pages : 562
Book Description
Nolan Wallach's mathematical research is remarkable in both its breadth and depth. His contributions to many fields include representation theory, harmonic analysis, algebraic geometry, combinatorics, number theory, differential equations, Riemannian geometry, ring theory, and quantum information theory. The touchstone and unifying thread running through all his work is the idea of symmetry. This volume is a collection of invited articles that pay tribute to Wallach's ideas, and show symmetry at work in a large variety of areas. The articles, predominantly expository, are written by distinguished mathematicians and contain sufficient preliminary material to reach the widest possible audiences. Graduate students, mathematicians, and physicists interested in representation theory and its applications will find many gems in this volume that have not appeared in print elsewhere. Contributors: D. Barbasch, K. Baur, O. Bucicovschi, B. Casselman, D. Ciubotaru, M. Colarusso, P. Delorme, T. Enright, W.T. Gan, A Garsia, G. Gour, B. Gross, J. Haglund, G. Han, P. Harris, J. Hong, R. Howe, M. Hunziker, B. Kostant, H. Kraft, D. Meyer, R. Miatello, L. Ni, G. Schwarz, L. Small, D. Vogan, N. Wallach, J. Wolf, G. Xin, O. Yacobi.
Representation Theory and Analysis on Homogeneous Spaces
Author: Semen Grigorʹevich Gindikin
Publisher: American Mathematical Soc.
ISBN: 082180300X
Category : Mathematics
Languages : en
Pages : 272
Book Description
A combination of new results and surveys of recent work on representation theory and the harmonic analysis of real and p-adic groups. Among the topics are nilpotent homogeneous spaces, multiplicity formulas for induced representations, and new methods for constructing unitary representations of real reductive groups. The 12 papers are from a conference at Rutgers University, February 1993. No index. Annotation copyright by Book News, Inc., Portland, OR
Publisher: American Mathematical Soc.
ISBN: 082180300X
Category : Mathematics
Languages : en
Pages : 272
Book Description
A combination of new results and surveys of recent work on representation theory and the harmonic analysis of real and p-adic groups. Among the topics are nilpotent homogeneous spaces, multiplicity formulas for induced representations, and new methods for constructing unitary representations of real reductive groups. The 12 papers are from a conference at Rutgers University, February 1993. No index. Annotation copyright by Book News, Inc., Portland, OR
Representation Theory, Complex Analysis, and Integral Geometry
Author: Bernhard Krötz
Publisher: Springer Science & Business Media
ISBN: 081764816X
Category : Mathematics
Languages : en
Pages : 282
Book Description
This volume targets graduate students and researchers in the fields of representation theory, automorphic forms, Hecke algebras, harmonic analysis, number theory.
Publisher: Springer Science & Business Media
ISBN: 081764816X
Category : Mathematics
Languages : en
Pages : 282
Book Description
This volume targets graduate students and researchers in the fields of representation theory, automorphic forms, Hecke algebras, harmonic analysis, number theory.
Representation Theory and Mathematical Physics
Author: Jeffrey Adams
Publisher: American Mathematical Soc.
ISBN: 0821852469
Category : Mathematics
Languages : en
Pages : 404
Book Description
This volume contains the proceedings of the conference on Representation Theory and Mathematical Physics, in honor of Gregg Zuckerman's 60th birthday, held October 24-27, 2009, at Yale University. Lie groups and their representations play a fundamental role in mathematics, in particular because of connections to geometry, topology, number theory, physics, combinatorics, and many other areas. Representation theory is one of the cornerstones of the Langlands program in number theory, dating to the 1970s. Zuckerman's work on derived functors, the translation principle, and coherent continuation lie at the heart of the modern theory of representations of Lie groups. One of the major unsolved problems in representation theory is that of the unitary dual. The fact that there is, in principle, a finite algorithm for computing the unitary dual relies heavily on Zuckerman's work. In recent years there has been a fruitful interplay between mathematics and physics, in geometric representation theory, string theory, and other areas. New developments on chiral algebras, representation theory of affine Kac-Moody algebras, and the geometric Langlands correspondence are some of the focal points of this volume. Recent developments in the geometric Langlands program point to exciting connections between certain automorphic representations and dual fibrations in geometric mirror symmetry.
Publisher: American Mathematical Soc.
ISBN: 0821852469
Category : Mathematics
Languages : en
Pages : 404
Book Description
This volume contains the proceedings of the conference on Representation Theory and Mathematical Physics, in honor of Gregg Zuckerman's 60th birthday, held October 24-27, 2009, at Yale University. Lie groups and their representations play a fundamental role in mathematics, in particular because of connections to geometry, topology, number theory, physics, combinatorics, and many other areas. Representation theory is one of the cornerstones of the Langlands program in number theory, dating to the 1970s. Zuckerman's work on derived functors, the translation principle, and coherent continuation lie at the heart of the modern theory of representations of Lie groups. One of the major unsolved problems in representation theory is that of the unitary dual. The fact that there is, in principle, a finite algorithm for computing the unitary dual relies heavily on Zuckerman's work. In recent years there has been a fruitful interplay between mathematics and physics, in geometric representation theory, string theory, and other areas. New developments on chiral algebras, representation theory of affine Kac-Moody algebras, and the geometric Langlands correspondence are some of the focal points of this volume. Recent developments in the geometric Langlands program point to exciting connections between certain automorphic representations and dual fibrations in geometric mirror symmetry.