Author: Kasra Mohaghegh
Publisher: Logos Verlag Berlin GmbH
ISBN: 3832527117
Category : Mathematics
Languages : en
Pages : 106
Book Description
Increasing complexity combined with decreasing geometrical sizes in electric circuit design lead to high dimensional dynamical models to be considered by EDA tools. Model order reduction (MOR) has become a popular strategy to decrease the problem's size while preserving its crucial properties. MOR shall achieve accurate statements on a circuit's behavior within an affordable amount of computational time. Just recently, MOR techniques are designed to consider the differential algebraic nature of the underlying models. We present an approach based on an e-embedding, i.e., a strategy applied in the construction of numerical integration schemes for differential algebraic equations (DAEs). The system of DAEs is transformed into an artificial system of ordinary differential equations (ODEs), since MOR schemes for ODEs can be applied now. We construct, analyze and test different strategies with respect to the usage of the parameter e that transforms the DAEs into ODEs. Moreover, accurate mathematical models for MOS-devices introduce highly nonlinear equations. As the packing density of devices is growing in circuit design, huge nonlinear systems appear in practice. It follows an increasing demand for reduced order modeling of nonlinear problems. In the thesis, we also review the status of existing techniques for nonlinear MOR by investigating the performance of the schemes applied in circuit simulation.
Linear and Nonlinear Model Order Reduction for Numerical Simulation of Electric Circuits
Author: Kasra Mohaghegh
Publisher: Logos Verlag Berlin GmbH
ISBN: 3832527117
Category : Mathematics
Languages : en
Pages : 106
Book Description
Increasing complexity combined with decreasing geometrical sizes in electric circuit design lead to high dimensional dynamical models to be considered by EDA tools. Model order reduction (MOR) has become a popular strategy to decrease the problem's size while preserving its crucial properties. MOR shall achieve accurate statements on a circuit's behavior within an affordable amount of computational time. Just recently, MOR techniques are designed to consider the differential algebraic nature of the underlying models. We present an approach based on an e-embedding, i.e., a strategy applied in the construction of numerical integration schemes for differential algebraic equations (DAEs). The system of DAEs is transformed into an artificial system of ordinary differential equations (ODEs), since MOR schemes for ODEs can be applied now. We construct, analyze and test different strategies with respect to the usage of the parameter e that transforms the DAEs into ODEs. Moreover, accurate mathematical models for MOS-devices introduce highly nonlinear equations. As the packing density of devices is growing in circuit design, huge nonlinear systems appear in practice. It follows an increasing demand for reduced order modeling of nonlinear problems. In the thesis, we also review the status of existing techniques for nonlinear MOR by investigating the performance of the schemes applied in circuit simulation.
Publisher: Logos Verlag Berlin GmbH
ISBN: 3832527117
Category : Mathematics
Languages : en
Pages : 106
Book Description
Increasing complexity combined with decreasing geometrical sizes in electric circuit design lead to high dimensional dynamical models to be considered by EDA tools. Model order reduction (MOR) has become a popular strategy to decrease the problem's size while preserving its crucial properties. MOR shall achieve accurate statements on a circuit's behavior within an affordable amount of computational time. Just recently, MOR techniques are designed to consider the differential algebraic nature of the underlying models. We present an approach based on an e-embedding, i.e., a strategy applied in the construction of numerical integration schemes for differential algebraic equations (DAEs). The system of DAEs is transformed into an artificial system of ordinary differential equations (ODEs), since MOR schemes for ODEs can be applied now. We construct, analyze and test different strategies with respect to the usage of the parameter e that transforms the DAEs into ODEs. Moreover, accurate mathematical models for MOS-devices introduce highly nonlinear equations. As the packing density of devices is growing in circuit design, huge nonlinear systems appear in practice. It follows an increasing demand for reduced order modeling of nonlinear problems. In the thesis, we also review the status of existing techniques for nonlinear MOR by investigating the performance of the schemes applied in circuit simulation.
Interpolatory Methods for Model Reduction
Author: A. C. Antoulas
Publisher: SIAM
ISBN: 1611976081
Category : Mathematics
Languages : en
Pages : 245
Book Description
Dynamical systems are a principal tool in the modeling, prediction, and control of a wide range of complex phenomena. As the need for improved accuracy leads to larger and more complex dynamical systems, direct simulation often becomes the only available strategy for accurate prediction or control, inevitably creating a considerable burden on computational resources. This is the main context where one considers model reduction, seeking to replace large systems of coupled differential and algebraic equations that constitute high fidelity system models with substantially fewer equations that are crafted to control the loss of fidelity that order reduction may induce in the system response. Interpolatory methods are among the most widely used model reduction techniques, and Interpolatory Methods for Model Reduction is the first comprehensive analysis of this approach available in a single, extensive resource. It introduces state-of-the-art methods reflecting significant developments over the past two decades, covering both classical projection frameworks for model reduction and data-driven, nonintrusive frameworks. This textbook is appropriate for a wide audience of engineers and other scientists working in the general areas of large-scale dynamical systems and data-driven modeling of dynamics.
Publisher: SIAM
ISBN: 1611976081
Category : Mathematics
Languages : en
Pages : 245
Book Description
Dynamical systems are a principal tool in the modeling, prediction, and control of a wide range of complex phenomena. As the need for improved accuracy leads to larger and more complex dynamical systems, direct simulation often becomes the only available strategy for accurate prediction or control, inevitably creating a considerable burden on computational resources. This is the main context where one considers model reduction, seeking to replace large systems of coupled differential and algebraic equations that constitute high fidelity system models with substantially fewer equations that are crafted to control the loss of fidelity that order reduction may induce in the system response. Interpolatory methods are among the most widely used model reduction techniques, and Interpolatory Methods for Model Reduction is the first comprehensive analysis of this approach available in a single, extensive resource. It introduces state-of-the-art methods reflecting significant developments over the past two decades, covering both classical projection frameworks for model reduction and data-driven, nonintrusive frameworks. This textbook is appropriate for a wide audience of engineers and other scientists working in the general areas of large-scale dynamical systems and data-driven modeling of dynamics.
Model Order Reduction: Theory, Research Aspects and Applications
Author: Wilhelmus H. Schilders
Publisher: Springer Science & Business Media
ISBN: 3540788417
Category : Mathematics
Languages : en
Pages : 471
Book Description
The idea for this book originated during the workshop “Model order reduction, coupled problems and optimization” held at the Lorentz Center in Leiden from S- tember 19–23, 2005. During one of the discussion sessions, it became clear that a book describing the state of the art in model order reduction, starting from the very basics and containing an overview of all relevant techniques, would be of great use for students, young researchers starting in the ?eld, and experienced researchers. The observation that most of the theory on model order reduction is scattered over many good papers, making it dif?cult to ?nd a good starting point, was supported by most of the participants. Moreover, most of the speakers at the workshop were willing to contribute to the book that is now in front of you. The goal of this book, as de?ned during the discussion sessions at the workshop, is three-fold: ?rst, it should describe the basics of model order reduction. Second, both general and more specialized model order reduction techniques for linear and nonlinear systems should be covered, including the use of several related numerical techniques. Third, the use of model order reduction techniques in practical appli- tions and current research aspects should be discussed. We have organized the book according to these goals. In Part I, the rationale behind model order reduction is explained, and an overview of the most common methods is described.
Publisher: Springer Science & Business Media
ISBN: 3540788417
Category : Mathematics
Languages : en
Pages : 471
Book Description
The idea for this book originated during the workshop “Model order reduction, coupled problems and optimization” held at the Lorentz Center in Leiden from S- tember 19–23, 2005. During one of the discussion sessions, it became clear that a book describing the state of the art in model order reduction, starting from the very basics and containing an overview of all relevant techniques, would be of great use for students, young researchers starting in the ?eld, and experienced researchers. The observation that most of the theory on model order reduction is scattered over many good papers, making it dif?cult to ?nd a good starting point, was supported by most of the participants. Moreover, most of the speakers at the workshop were willing to contribute to the book that is now in front of you. The goal of this book, as de?ned during the discussion sessions at the workshop, is three-fold: ?rst, it should describe the basics of model order reduction. Second, both general and more specialized model order reduction techniques for linear and nonlinear systems should be covered, including the use of several related numerical techniques. Third, the use of model order reduction techniques in practical appli- tions and current research aspects should be discussed. We have organized the book according to these goals. In Part I, the rationale behind model order reduction is explained, and an overview of the most common methods is described.
Coupled Multiscale Simulation and Optimization in Nanoelectronics
Author: Michael Günther
Publisher: Springer
ISBN: 3662466724
Category : Computers
Languages : en
Pages : 574
Book Description
Designing complex integrated circuits relies heavily on mathematical methods and calls for suitable simulation and optimization tools. The current design approach involves simulations and optimizations in different physical domains (device, circuit, thermal, electromagnetic) and in a range of electrical engineering disciplines (logic, timing, power, crosstalk, signal integrity, system functionality). COMSON was a Marie Curie Research Training Network created to meet these new scientific and training challenges by (a) developing new descriptive models that take these mutual dependencies into account, (b) combining these models with existing circuit descriptions in new simulation strategies and (c) developing new optimization techniques that will accommodate new designs. The book presents the main project results in the fields of PDAE modeling and simulation, model order reduction techniques and optimization, based on merging the know-how of three major European semiconductor companies with the combined expertise of university groups specialized in developing suitable mathematical models, numerical schemes and e-learning facilities. In addition, a common Demonstrator Platform for testing mathematical methods and approaches was created to assess whether they are capable of addressing the industry’s problems, and to educate young researchers by providing hands-on experience with state-of-the-art problems.
Publisher: Springer
ISBN: 3662466724
Category : Computers
Languages : en
Pages : 574
Book Description
Designing complex integrated circuits relies heavily on mathematical methods and calls for suitable simulation and optimization tools. The current design approach involves simulations and optimizations in different physical domains (device, circuit, thermal, electromagnetic) and in a range of electrical engineering disciplines (logic, timing, power, crosstalk, signal integrity, system functionality). COMSON was a Marie Curie Research Training Network created to meet these new scientific and training challenges by (a) developing new descriptive models that take these mutual dependencies into account, (b) combining these models with existing circuit descriptions in new simulation strategies and (c) developing new optimization techniques that will accommodate new designs. The book presents the main project results in the fields of PDAE modeling and simulation, model order reduction techniques and optimization, based on merging the know-how of three major European semiconductor companies with the combined expertise of university groups specialized in developing suitable mathematical models, numerical schemes and e-learning facilities. In addition, a common Demonstrator Platform for testing mathematical methods and approaches was created to assess whether they are capable of addressing the industry’s problems, and to educate young researchers by providing hands-on experience with state-of-the-art problems.
Model Reduction for Circuit Simulation
Author: Peter Benner
Publisher: Springer Science & Business Media
ISBN: 940070089X
Category : Technology & Engineering
Languages : en
Pages : 317
Book Description
Simulation based on mathematical models plays a major role in computer aided design of integrated circuits (ICs). Decreasing structure sizes, increasing packing densities and driving frequencies require the use of refined mathematical models, and to take into account secondary, parasitic effects. This leads to very high dimensional problems which nowadays require simulation times too large for the short time-to-market demands in industry. Modern Model Order Reduction (MOR) techniques present a way out of this dilemma in providing surrogate models which keep the main characteristics of the device while requiring a significantly lower simulation time than the full model. With Model Reduction for Circuit Simulation we survey the state of the art in the challenging research field of MOR for ICs, and also address its future research directions. Special emphasis is taken on aspects stemming from miniturisations to the nano scale. Contributions cover complexity reduction using e.g., balanced truncation, Krylov-techniques or POD approaches. For semiconductor applications a focus is on generalising current techniques to differential-algebraic equations, on including design parameters, on preserving stability, and on including nonlinearity by means of piecewise linearisations along solution trajectories (TPWL) and interpolation techniques for nonlinear parts. Furthermore the influence of interconnects and power grids on the physical properties of the device is considered, and also top-down system design approaches in which detailed block descriptions are combined with behavioral models. Further topics consider MOR and the combination of approaches from optimisation and statistics, and the inclusion of PDE models with emphasis on MOR for the resulting partial differential algebraic systems. The methods which currently are being developed have also relevance in other application areas such as mechanical multibody systems, and systems arising in chemistry and to biology. The current number of books in the area of MOR for ICs is very limited, so that this volume helps to fill a gap in providing the state of the art material, and to stimulate further research in this area of MOR. Model Reduction for Circuit Simulation also reflects and documents the vivid interaction between three active research projects in this area, namely the EU-Marie Curie Action ToK project O-MOORE-NICE (members in Belgium, The Netherlands and Germany), the EU-Marie Curie Action RTN-project COMSON (members in The Netherlands, Italy, Germany, and Romania), and the German federal project System reduction in nano-electronics (SyreNe).
Publisher: Springer Science & Business Media
ISBN: 940070089X
Category : Technology & Engineering
Languages : en
Pages : 317
Book Description
Simulation based on mathematical models plays a major role in computer aided design of integrated circuits (ICs). Decreasing structure sizes, increasing packing densities and driving frequencies require the use of refined mathematical models, and to take into account secondary, parasitic effects. This leads to very high dimensional problems which nowadays require simulation times too large for the short time-to-market demands in industry. Modern Model Order Reduction (MOR) techniques present a way out of this dilemma in providing surrogate models which keep the main characteristics of the device while requiring a significantly lower simulation time than the full model. With Model Reduction for Circuit Simulation we survey the state of the art in the challenging research field of MOR for ICs, and also address its future research directions. Special emphasis is taken on aspects stemming from miniturisations to the nano scale. Contributions cover complexity reduction using e.g., balanced truncation, Krylov-techniques or POD approaches. For semiconductor applications a focus is on generalising current techniques to differential-algebraic equations, on including design parameters, on preserving stability, and on including nonlinearity by means of piecewise linearisations along solution trajectories (TPWL) and interpolation techniques for nonlinear parts. Furthermore the influence of interconnects and power grids on the physical properties of the device is considered, and also top-down system design approaches in which detailed block descriptions are combined with behavioral models. Further topics consider MOR and the combination of approaches from optimisation and statistics, and the inclusion of PDE models with emphasis on MOR for the resulting partial differential algebraic systems. The methods which currently are being developed have also relevance in other application areas such as mechanical multibody systems, and systems arising in chemistry and to biology. The current number of books in the area of MOR for ICs is very limited, so that this volume helps to fill a gap in providing the state of the art material, and to stimulate further research in this area of MOR. Model Reduction for Circuit Simulation also reflects and documents the vivid interaction between three active research projects in this area, namely the EU-Marie Curie Action ToK project O-MOORE-NICE (members in Belgium, The Netherlands and Germany), the EU-Marie Curie Action RTN-project COMSON (members in The Netherlands, Italy, Germany, and Romania), and the German federal project System reduction in nano-electronics (SyreNe).
Encyclopedia of Computational Mechanics
Author: Erwin Stein
Publisher:
ISBN:
Category : Dynamics
Languages : en
Pages : 870
Book Description
The Encyclopedia of Computational Mechanics provides a comprehensive collection of knowledge about the theory and practice of computational mechanics.
Publisher:
ISBN:
Category : Dynamics
Languages : en
Pages : 870
Book Description
The Encyclopedia of Computational Mechanics provides a comprehensive collection of knowledge about the theory and practice of computational mechanics.
Convective Heat Transfer in Porous Media
Author: Yasser Mahmoudi
Publisher: CRC Press
ISBN: 0429672047
Category : Science
Languages : en
Pages : 399
Book Description
Focusing on heat transfer in porous media, this book covers recent advances in nano and macro’ scales. Apart from introducing heat flux bifurcation and splitting within porous media, it highlights two-phase flow, nanofluids, wicking, and convection in bi-disperse porous media. New methods in modeling heat and transport in porous media, such as pore-scale analysis and Lattice–Boltzmann methods, are introduced. The book covers related engineering applications, such as enhanced geothermal systems, porous burners, solar systems, transpiration cooling in aerospace, heat transfer enhancement and electronic cooling, drying and soil evaporation, foam heat exchangers, and polymer-electrolyte fuel cells.
Publisher: CRC Press
ISBN: 0429672047
Category : Science
Languages : en
Pages : 399
Book Description
Focusing on heat transfer in porous media, this book covers recent advances in nano and macro’ scales. Apart from introducing heat flux bifurcation and splitting within porous media, it highlights two-phase flow, nanofluids, wicking, and convection in bi-disperse porous media. New methods in modeling heat and transport in porous media, such as pore-scale analysis and Lattice–Boltzmann methods, are introduced. The book covers related engineering applications, such as enhanced geothermal systems, porous burners, solar systems, transpiration cooling in aerospace, heat transfer enhancement and electronic cooling, drying and soil evaporation, foam heat exchangers, and polymer-electrolyte fuel cells.
Linear Feedback Control
Author: Dingyu Xue
Publisher: SIAM
ISBN: 9780898718621
Category : Mathematics
Languages : en
Pages : 366
Book Description
This book discusses analysis and design techniques for linear feedback control systems using MATLAB® software. By reducing the mathematics, increasing MATLAB working examples, and inserting short scripts and plots within the text, the authors have created a resource suitable for almost any type of user. The book begins with a summary of the properties of linear systems and addresses modeling and model reduction issues. In the subsequent chapters on analysis, the authors introduce time domain, complex plane, and frequency domain techniques. Their coverage of design includes discussions on model-based controller designs, PID controllers, and robust control designs. A unique aspect of the book is its inclusion of a chapter on fractional-order controllers, which are useful in control engineering practice.
Publisher: SIAM
ISBN: 9780898718621
Category : Mathematics
Languages : en
Pages : 366
Book Description
This book discusses analysis and design techniques for linear feedback control systems using MATLAB® software. By reducing the mathematics, increasing MATLAB working examples, and inserting short scripts and plots within the text, the authors have created a resource suitable for almost any type of user. The book begins with a summary of the properties of linear systems and addresses modeling and model reduction issues. In the subsequent chapters on analysis, the authors introduce time domain, complex plane, and frequency domain techniques. Their coverage of design includes discussions on model-based controller designs, PID controllers, and robust control designs. A unique aspect of the book is its inclusion of a chapter on fractional-order controllers, which are useful in control engineering practice.
Model Reduction of Parametrized Systems
Author: Peter Benner
Publisher: Springer
ISBN: 3319587862
Category : Mathematics
Languages : en
Pages : 503
Book Description
The special volume offers a global guide to new concepts and approaches concerning the following topics: reduced basis methods, proper orthogonal decomposition, proper generalized decomposition, approximation theory related to model reduction, learning theory and compressed sensing, stochastic and high-dimensional problems, system-theoretic methods, nonlinear model reduction, reduction of coupled problems/multiphysics, optimization and optimal control, state estimation and control, reduced order models and domain decomposition methods, Krylov-subspace and interpolatory methods, and applications to real industrial and complex problems. The book represents the state of the art in the development of reduced order methods. It contains contributions from internationally respected experts, guaranteeing a wide range of expertise and topics. Further, it reflects an important effor t, carried out over the last 12 years, to build a growing research community in this field. Though not a textbook, some of the chapters can be used as reference materials or lecture notes for classes and tutorials (doctoral schools, master classes).
Publisher: Springer
ISBN: 3319587862
Category : Mathematics
Languages : en
Pages : 503
Book Description
The special volume offers a global guide to new concepts and approaches concerning the following topics: reduced basis methods, proper orthogonal decomposition, proper generalized decomposition, approximation theory related to model reduction, learning theory and compressed sensing, stochastic and high-dimensional problems, system-theoretic methods, nonlinear model reduction, reduction of coupled problems/multiphysics, optimization and optimal control, state estimation and control, reduced order models and domain decomposition methods, Krylov-subspace and interpolatory methods, and applications to real industrial and complex problems. The book represents the state of the art in the development of reduced order methods. It contains contributions from internationally respected experts, guaranteeing a wide range of expertise and topics. Further, it reflects an important effor t, carried out over the last 12 years, to build a growing research community in this field. Though not a textbook, some of the chapters can be used as reference materials or lecture notes for classes and tutorials (doctoral schools, master classes).
Reduced-Order Modeling (ROM) for Simulation and Optimization
Author: Winfried Keiper
Publisher: Springer
ISBN: 3319753193
Category : Mathematics
Languages : en
Pages : 184
Book Description
This edited monograph collects research contributions and addresses the advancement of efficient numerical procedures in the area of model order reduction (MOR) for simulation, optimization and control. The topical scope includes, but is not limited to, new out-of-the-box algorithmic solutions for scientific computing, e.g. reduced basis methods for industrial problems and MOR approaches for electrochemical processes. The target audience comprises research experts and practitioners in the field of simulation, optimization and control, but the book may also be beneficial for graduate students alike.
Publisher: Springer
ISBN: 3319753193
Category : Mathematics
Languages : en
Pages : 184
Book Description
This edited monograph collects research contributions and addresses the advancement of efficient numerical procedures in the area of model order reduction (MOR) for simulation, optimization and control. The topical scope includes, but is not limited to, new out-of-the-box algorithmic solutions for scientific computing, e.g. reduced basis methods for industrial problems and MOR approaches for electrochemical processes. The target audience comprises research experts and practitioners in the field of simulation, optimization and control, but the book may also be beneficial for graduate students alike.