An Introduction to Wavelets and Other Filtering Methods in Finance and Economics

An Introduction to Wavelets and Other Filtering Methods in Finance and Economics PDF Author: Ramazan Gençay
Publisher: Elsevier
ISBN: 0080509223
Category : Business & Economics
Languages : en
Pages : 383

Get Book Here

Book Description
An Introduction to Wavelets and Other Filtering Methods in Finance and Economics presents a unified view of filtering techniques with a special focus on wavelet analysis in finance and economics. It emphasizes the methods and explanations of the theory that underlies them. It also concentrates on exactly what wavelet analysis (and filtering methods in general) can reveal about a time series. It offers testing issues which can be performed with wavelets in conjunction with the multi-resolution analysis. The descriptive focus of the book avoids proofs and provides easy access to a wide spectrum of parametric and nonparametric filtering methods. Examples and empirical applications will show readers the capabilities, advantages, and disadvantages of each method. - The first book to present a unified view of filtering techniques - Concentrates on exactly what wavelets analysis and filtering methods in general can reveal about a time series - Provides easy access to a wide spectrum of parametric and non-parametric filtering methods

An Introduction to Wavelets and Other Filtering Methods in Finance and Economics

An Introduction to Wavelets and Other Filtering Methods in Finance and Economics PDF Author: Ramazan Gençay
Publisher: Elsevier
ISBN: 0080509223
Category : Business & Economics
Languages : en
Pages : 383

Get Book Here

Book Description
An Introduction to Wavelets and Other Filtering Methods in Finance and Economics presents a unified view of filtering techniques with a special focus on wavelet analysis in finance and economics. It emphasizes the methods and explanations of the theory that underlies them. It also concentrates on exactly what wavelet analysis (and filtering methods in general) can reveal about a time series. It offers testing issues which can be performed with wavelets in conjunction with the multi-resolution analysis. The descriptive focus of the book avoids proofs and provides easy access to a wide spectrum of parametric and nonparametric filtering methods. Examples and empirical applications will show readers the capabilities, advantages, and disadvantages of each method. - The first book to present a unified view of filtering techniques - Concentrates on exactly what wavelets analysis and filtering methods in general can reveal about a time series - Provides easy access to a wide spectrum of parametric and non-parametric filtering methods

An Introduction to Wavelet Theory in Finance

An Introduction to Wavelet Theory in Finance PDF Author: Francis In
Publisher: World Scientific
ISBN: 9814397830
Category : Business & Economics
Languages : en
Pages : 213

Get Book Here

Book Description
This book offers an introduction to wavelet theory and provides the essence of wavelet analysis including Fourier analysis and spectral analysis; the maximum overlap discrete wavelet transform; wavelet variance, covariance, and correlation in a unified and friendly manner. It aims to bridge the gap between theory and practice by presenting substantial applications of wavelets in economics and finance. This book is the first to provide a comprehensive application of wavelet analysis to financial markets, covering new frontier issues in empirical finance and economics. The first chapter of this unique text starts with a description of the key features and applications of wavelets. After an overview of wavelet analysis, successive chapters rigorously examine the various economic and financial topics and issues that stimulate academic and professional research, including equity, interest swaps, hedges and futures, foreign exchanges, financial asset pricing, and mutual fund markets. This detail-oriented text is descriptive and designed purely for academic researchers and financial practitioners. It assumes no prior knowledge of econometrics and covers important topics such as portfolio asset allocation, asset pricing, hedging strategies, new risk measures, and mutual fund performance. Its accessible presentation is also suitable for post-graduates in a variety of disciplines applied economics, financial engineering, international finance, financial econometrics, and fund management. To facilitate the subject of wavelets, sophisticated proofs and mathematics are avoided as much as possible when applying the wavelet multiscaling method. To enhance the reader's understanding in practical applications of the wavelet multiscaling method, this book provides sample programming instruction backed by Matlab wavelet code.

Wavelet Applications in Economics and Finance

Wavelet Applications in Economics and Finance PDF Author: Marco Gallegati
Publisher: Springer
ISBN: 3319070614
Category : Business & Economics
Languages : en
Pages : 271

Get Book Here

Book Description
This book deals with the application of wavelet and spectral methods for the analysis of nonlinear and dynamic processes in economics and finance. It reflects some of the latest developments in the area of wavelet methods applied to economics and finance. The topics include business cycle analysis, asset prices, financial econometrics, and forecasting. An introductory paper by James Ramsey, providing a personal retrospective of a decade's research on wavelet analysis, offers an excellent overview over the field.

Wavelet Multiresolution Analysis of Financial Time Series

Wavelet Multiresolution Analysis of Financial Time Series PDF Author: Mikko Ranta
Publisher:
ISBN: 9789524763035
Category : Finance
Languages : en
Pages : 121

Get Book Here

Book Description


Stock Market Modeling and Forecasting

Stock Market Modeling and Forecasting PDF Author: Xiaolian Zheng
Publisher: Springer
ISBN: 1447151550
Category : Technology & Engineering
Languages : en
Pages : 166

Get Book Here

Book Description
Stock Market Modeling and Forecasting translates experience in system adaptation gained in an engineering context to the modeling of financial markets with a view to improving the capture and understanding of market dynamics. The modeling process is considered as identifying a dynamic system in which a real stock market is treated as an unknown plant and the identification model proposed is tuned by feedback of the matching error. Like a physical system, a financial market exhibits fast and slow dynamics corresponding to external (such as company value and profitability) and internal forces (such as investor sentiment and commodity prices) respectively. The framework presented here, consisting of an internal model and an adaptive filter, is successful at considering both fast and slow market dynamics. A double selection method is efficacious in identifying input factors influential in market movements, revealing them to be both frequency- and market-dependent. The authors present work on both developed and developing markets in the shape of the US, Hong Kong, Chinese and Singaporean stock markets. Results from all these sources demonstrate the efficiency of the model framework in identifying significant influences and the quality of its predictive ability; promising results are also obtained by applying the model framework to the forecasting of major market-turning periods. Having shown that system-theoretic ideas can form the core of a novel and effective basis for stock market analysis, the book is completed by an indication of possible and likely future expansions of the research in this area.

Wavelet Methods for Time Series Analysis

Wavelet Methods for Time Series Analysis PDF Author: Donald B. Percival
Publisher: Cambridge University Press
ISBN: 1107717396
Category : Mathematics
Languages : en
Pages : 628

Get Book Here

Book Description
This introduction to wavelet analysis 'from the ground level and up', and to wavelet-based statistical analysis of time series focuses on practical discrete time techniques, with detailed descriptions of the theory and algorithms needed to understand and implement the discrete wavelet transforms. Numerous examples illustrate the techniques on actual time series. The many embedded exercises - with complete solutions provided in the Appendix - allow readers to use the book for self-guided study. Additional exercises can be used in a classroom setting. A Web site offers access to the time series and wavelets used in the book, as well as information on accessing software in S-Plus and other languages. Students and researchers wishing to use wavelet methods to analyze time series will find this book essential.

Wavelet Transforms and Their Applications

Wavelet Transforms and Their Applications PDF Author: Lokenath Debnath
Publisher: Springer Science & Business Media
ISBN: 1461200970
Category : Technology & Engineering
Languages : en
Pages : 575

Get Book Here

Book Description
Overview Historically, the concept of "ondelettes" or "wavelets" originated from the study of time-frequency signal analysis, wave propagation, and sampling theory. One of the main reasons for the discovery of wavelets and wavelet transforms is that the Fourier transform analysis does not contain the local information of signals. So the Fourier transform cannot be used for analyzing signals in a joint time and frequency domain. In 1982, Jean MorIet, in collaboration with a group of French engineers, first introduced the idea of wavelets as a family of functions constructed by using translation and dilation of a single function, called the mother wavelet, for the analysis of nonstationary signals. However, this new concept can be viewed as the synthesis of various ideas originating from different disciplines including mathematics (Calder6n-Zygmund operators and Littlewood-Paley theory), physics (coherent states in quantum mechanics and the renormalization group), and engineering (quadratic mirror filters, sideband coding in signal processing, and pyramidal algorithms in image processing). Wavelet analysis is an exciting new method for solving difficult problems in mathematics, physics, and engineering, with modern applications as diverse as wave propagation, data compression, image processing, pattern recognition, computer graphics, the detection of aircraft and submarines, and improvement in CAT scans and other medical image technology. Wavelets allow complex information such as music, speech, images, and patterns to be decomposed into elementary forms, called the fundamental building blocks, at different positions and scales and subsequently reconstructed with high precision.

Wavelet Neural Networks

Wavelet Neural Networks PDF Author: Antonios K. Alexandridis
Publisher: John Wiley & Sons
ISBN: 1118596293
Category : Mathematics
Languages : en
Pages : 262

Get Book Here

Book Description
A step-by-step introduction to modeling, training, and forecasting using wavelet networks Wavelet Neural Networks: With Applications in Financial Engineering, Chaos, and Classification presents the statistical model identification framework that is needed to successfully apply wavelet networks as well as extensive comparisons of alternate methods. Providing a concise and rigorous treatment for constructing optimal wavelet networks, the book links mathematical aspects of wavelet network construction to statistical modeling and forecasting applications in areas such as finance, chaos, and classification. The authors ensure that readers obtain a complete understanding of model identification by providing in-depth coverage of both model selection and variable significance testing. Featuring an accessible approach with introductory coverage of the basic principles of wavelet analysis, Wavelet Neural Networks: With Applications in Financial Engineering, Chaos, and Classification also includes: • Methods that can be easily implemented or adapted by researchers, academics, and professionals in identification and modeling for complex nonlinear systems and artificial intelligence • Multiple examples and thoroughly explained procedures with numerous applications ranging from financial modeling and financial engineering, time series prediction and construction of confidence and prediction intervals, and classification and chaotic time series prediction • An extensive introduction to neural networks that begins with regression models and builds to more complex frameworks • Coverage of both the variable selection algorithm and the model selection algorithm for wavelet networks in addition to methods for constructing confidence and prediction intervals Ideal as a textbook for MBA and graduate-level courses in applied neural network modeling, artificial intelligence, advanced data analysis, time series, and forecasting in financial engineering, the book is also useful as a supplement for courses in informatics, identification and modeling for complex nonlinear systems, and computational finance. In addition, the book serves as a valuable reference for researchers and practitioners in the fields of mathematical modeling, engineering, artificial intelligence, decision science, neural networks, and finance and economics.

Ten Lectures on Wavelets

Ten Lectures on Wavelets PDF Author: Ingrid Daubechies
Publisher: SIAM
ISBN: 9781611970104
Category : Science
Languages : en
Pages : 357

Get Book Here

Book Description
Wavelets are a mathematical development that may revolutionize the world of information storage and retrieval according to many experts. They are a fairly simple mathematical tool now being applied to the compression of data--such as fingerprints, weather satellite photographs, and medical x-rays--that were previously thought to be impossible to condense without losing crucial details. This monograph contains 10 lectures presented by Dr. Daubechies as the principal speaker at the 1990 CBMS-NSF Conference on Wavelets and Applications. The author has worked on several aspects of the wavelet transform and has developed a collection of wavelets that are remarkably efficient.

Modelling Financial Time Series

Modelling Financial Time Series PDF Author: Stephen J. Taylor
Publisher: World Scientific
ISBN: 9812770852
Category : Business & Economics
Languages : en
Pages : 297

Get Book Here

Book Description
This book contains several innovative models for the prices of financial assets. First published in 1986, it is a classic text in the area of financial econometrics. It presents ARCH and stochastic volatility models that are often used and cited in academic research and are applied by quantitative analysts in many banks. Another often-cited contribution of the first edition is the documentation of statistical characteristics of financial returns, which are referred to as stylized facts. This second edition takes into account the remarkable progress made by empirical researchers during the past two decades from 1986 to 2006. In the new Preface, the author summarizes this progress in two key areas: firstly, measuring, modelling and forecasting volatility; and secondly, detecting and exploiting price trends. Sample Chapter(s). Chapter 1: Introduction (1,134 KB). Contents: Features of Financial Returns; Modelling Price Volatility; Forecasting Standard Deviations; The Accuracy of Autocorrelation Estimates; Testing the Random Walk Hypothesis; Forecasting Trends in Prices; Evidence Against the Efficiency of Futures Markets; Valuing Options; Appendix: A Computer Program for Modelling Financial Time Series. Readership: Academic researchers in finance & economics; quantitative analysts.