Thermal Expansion of PBX 9501 and PBX 9502 Plastic-bonded Explosives

Thermal Expansion of PBX 9501 and PBX 9502 Plastic-bonded Explosives PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Two applications of thermal expansion measurements on plastic-bonded explosive (PBX) composites are described. In the first dilatometer application, thermal expansion properties of HMX-based PBX 9501 are measured over a broad thermal range that includes glass and domain-restructuring transitions in the polymeric binder. Results are consistent with other thermal measurements and analyses performed on the composite, as well as on the binder itself. The second application used the dilatometer to distinguish the reversible and irreversible components of thermal expansion in PBX 9502, a TATB-based explosive. Irreversible expansion of the composite is believed to derive from the highly-anisotropic coefficient of thermal expansion (CTE) values measured on single T A TB crystals, although the mechanism is not well understood. Effects of specimen density, thermal ramp rate, and thermal range variation (warm first or cold first) were explored, and the results are presented and discussed. Dilatometer measurements are ongoing towards gaining insight into the mechanism(s) responsible for PBX 9502 irreversible thermal expansion.

Thermal Expansion of PBX 9501 and PBX 9502 Plastic-bonded Explosives

Thermal Expansion of PBX 9501 and PBX 9502 Plastic-bonded Explosives PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Two applications of thermal expansion measurements on plastic-bonded explosive (PBX) composites are described. In the first dilatometer application, thermal expansion properties of HMX-based PBX 9501 are measured over a broad thermal range that includes glass and domain-restructuring transitions in the polymeric binder. Results are consistent with other thermal measurements and analyses performed on the composite, as well as on the binder itself. The second application used the dilatometer to distinguish the reversible and irreversible components of thermal expansion in PBX 9502, a TATB-based explosive. Irreversible expansion of the composite is believed to derive from the highly-anisotropic coefficient of thermal expansion (CTE) values measured on single T A TB crystals, although the mechanism is not well understood. Effects of specimen density, thermal ramp rate, and thermal range variation (warm first or cold first) were explored, and the results are presented and discussed. Dilatometer measurements are ongoing towards gaining insight into the mechanism(s) responsible for PBX 9502 irreversible thermal expansion.

Thermal Expansion of Plastic Bonded Explosives PBX 9501 and 9502

Thermal Expansion of Plastic Bonded Explosives PBX 9501 and 9502 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Effects of Temperature and Pressure on the Glass Transitions of Plastic Bonded Explosives

Effects of Temperature and Pressure on the Glass Transitions of Plastic Bonded Explosives PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 25

Get Book Here

Book Description
Various plastic bonded explosives (PBXs) contain about 5-wt% polymer, plasticizer, and stabilizer as binder. The glass-transition temperature (T{sub g}) determines, in part, if the binder will reduce or increase the sensitivity of the PBX to impact. A soft binder reduces the impact sensitivity; however, too soft a binder compromises the mechanical strength below that desirable for dimensional stability. Glass transitions were measured by temperature modulated DSC for PBXs before and after pressing. Pressing temperature was 90 C. The T{sub g} of Estane, a polyester/polyurethane used in some PBX binders, was investigated. Only small changes were observed in the low temperature T{sub g} of the soft segments but larger changes were seen in the higher temperature transitions due to the relaxation of the hard segments. The T{sub g} of Kel F 800, a binder used in insensitive PBX 9502, was observed near ambient temperature. The PBX 9502 had a lower T{sub g} than the neat polymer. Mechanical strength will be measured for the samples.

Binder/HMX Interaction in PBX9501 at Elevated Temperatures

Binder/HMX Interaction in PBX9501 at Elevated Temperatures PDF Author: S. C. K.
Publisher:
ISBN:
Category :
Languages : en
Pages : 6

Get Book Here

Book Description
Plastic bonded explosives (PBX) generally consist of 85 - 95 % by weight energetic material, such as HMX, and 5 - 15 % polymeric binder. Understanding of the structure and morphology at elevated temperatures and pressures is important for predicting of PBX behavior in accident scenarios. The crystallographic behavior of pure HMX has been measured as functions of temperature and grain size. The investigation is extended to the high temperature behavior of PBX 9501 (95% HMX, 2.5 % Estane, 2.5 % BDNPA/F). The results show that the HMX {beta}-phase to {delta}-phase transition in PBX 9501 is similar to that in neat HMX. However, in the presence of the PBX 9501 binder, {delta}-phase HMX readily converts back to {beta}-phase during cooling. Using the same temperature profile, the conversion rate decreases for each subsequent heating and cooling cycle. As observed in earlier experiments, no reverse conversion is observed without the polymer binder. It is proposed that the reversion of {delta}-phase to {beta}-phase is due to changes in the surface molecular potential caused by the influence of the polymer binder on the surface molecules of the {delta}-phase. Upon thermal cycling, the polymer binder segregates from the HMX particles and thus reduces the influence of the binder on the surface molecules. This segregation increases the resistance for the {delta}-phase to {beta}-phase transition, as demonstrated in an aged PBX 9501 material for which the reversion is not observed.

Effects of Binder Concentration on the Properties of Plastic-bonded Explosives

Effects of Binder Concentration on the Properties of Plastic-bonded Explosives PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
A series of plastic-bonded explosives (PBX) has been formulated with more binder than is normally contained in high-energy formulations. Adding a relatively small amount of binder to a material such as PBX 9501 (95/2.5/1.25/1.25 wt % HMX/Estane/BDNPA/BDNPF (the BDNPA and BDNPF form a eutectic that is frequently called simply the eutectic)) was found to decrease the shock sensitivity while not decreasing the energy of the explosive. The best compromise for a PBX 9501-type material contains about 92 wt % HMX. Adding additional binder does not continue to decrease the gap sensitivity of the formulation; however, the energy of the PBX decreases as expected. The higher-binder formulations are of potential use because of the possibility of formulating a PBX with energy similar to TATB formulations, such as PBX 9502 (95/5 wt % TATB/Kel-F 800), and with a higher strain to failure. 2 refs., 4 figs., 1 tab.

The Effect of Confinement on Cookoff of a Plastic Bonded Explosive (PBX 9501).

The Effect of Confinement on Cookoff of a Plastic Bonded Explosive (PBX 9501). PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 10

Get Book Here

Book Description


A Parametric Pressing Study Using a Plastic-bonded Explosive

A Parametric Pressing Study Using a Plastic-bonded Explosive PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 22

Get Book Here

Book Description
Pressed plastic-bonded explosives, PBXs, are commonly used by defense and private industry. PBX 9501 is composed of HMX crystals held together with a plastic binder 'softened' with plasticizers. The detonation behavior of any explosive is very dependent upon its density, with the desire to have a uniform, high density throughout the explosive component. A parametric study has been performed pressing PBX 9501 hydrostatically and uniaxially. The effects of several pressing parameters on the bulk density and density profile, as well as mechanical properties, have been measured. The parameters investigated include pressure, temperature, number of cycles, dwell time, rest time, sack thickness, and particle distribution and size. Density distributions within the pressed explosives were also compared.

Reactive Wave Growth in Shock-compressed Thermally Degraded High Explosives

Reactive Wave Growth in Shock-compressed Thermally Degraded High Explosives PDF Author:
Publisher:
ISBN:
Category : Acoustic phenomena in nature
Languages : en
Pages : 4

Get Book Here

Book Description
The authors have performed experiments to study the effect of thermal degradation on shock sensitivity and growth to detonation of several high-density plastic bonded explosives, confined in stainless steel cells. Assemblies were heated in situ in the target chamber of a light-gas gun. Confinement was varied to allow, in some cases, for thermal expansion of the explosive, and in other cases to vent the decomposition gases. Particle velocity profiles were measured using VISAR at a LiF window interface. Results for the IHE PBX-9502 showed that its sensitivity to shock initiation could be dramatically increased or decreased depending on the confinement conditions during heating. Effects were much less pronounced for PBX-9404 and PBX-9501.

Modeling the Mechanical Response of PBX 9501

Modeling the Mechanical Response of PBX 9501 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
An engineering overview of the mechanical response of Plastic-Bonded eXplosives (PBXs), specifically PBX 9501, will be provided with emphasis on observed mechanisms associated with different types of mechanical testing. Mechanical tests in the form of uniaxial tension, compression, cyclic loading, creep (compression and tension), and Hopkinson bar show strain rate and temperature dependence. A range of mechanical behavior is observed which includes small strain recoverable response in the form of viscoelasticity; change in stiffness and softening beyond peak strength due to damage in the form microcracks, debonding, void formation and the growth of existing voids; inelastic response in the form of irrecoverable strain as shown in cyclic tests, and viscoelastic creep combined with plastic response as demonstrated in creep and recovery tests. The main focus of this paper is to elucidate the challenges and issues involved in modeling the mechanical behavior of PBXs for simulating thermo-mechanical responses in engineering components. Examples of validation of a constitutive material model based on a few of the observed mechanisms will be demonstrated against three point bending, split Hopkinson pressure bar and Brazilian disk geometry.

Influence of Polymer Molecular Weight, Temperature, and Strain Rate on the Mechanical Properties of PBX 9501

Influence of Polymer Molecular Weight, Temperature, and Strain Rate on the Mechanical Properties of PBX 9501 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Compression and tensile measurements were conducted on newly formulated (baseline) and lower molecular weight (virtually-aged) plastic-bonded explosive PBX 9501. The PBX 9501 binder system is composed of nitroplasticized Estane 5703, TM a polyester polyurethane copolymer. The molecular weight of polyester urethanes can degrade with time as a function of hydrolysis, affecting the mechanical behavior of the polymer or a polymer composite material of high explosives, i.e. PBXs. The molecular weight of Estane 5703{trademark} was degraded by exposure to high temperature and humidity for different periods of time, and then formulated to produce ''virtually-aged'' PBX 9501 specimens. Quasi-static and dynamic compression tests were conducted on the baseline and virtually-aged PBX 9501 as a function of temperature and strain rate. Quasi-static tensile tests were also conducted as a function of temperature and test rate. Rate and temperature dependence was exhibited during both compression and tensile loading. Results also show significant differences between the baseline and virtually-aged specimens for the dynamic compression tests at -15 C, and for the quasi-static compression tests at -15 C, 22 C, and 50 C.