Author: Chee Sun Won
Publisher: Springer Science & Business Media
ISBN: 9780306481925
Category : Computers
Languages : en
Pages : 192
Book Description
Stochastic Image Processing provides the first thorough treatment of Markov and hidden Markov random fields and their application to image processing. Although promoted as a promising approach for over thirty years, it has only been in the past few years that the theory and algorithms have developed to the point of providing useful solutions to old and new problems in image processing. Markov random fields are a multidimensional extension of Markov chains, but the generalization is complicated by the lack of a natural ordering of pixels in multidimensional spaces. Hidden Markov fields are a natural generalization of the hidden Markov models that have proved essential to the development of modern speech recognition, but again the multidimensional nature of the signals makes them inherently more complicated to handle. This added complexity contributed to the long time required for the development of successful methods and applications. This book collects together a variety of successful approaches to a complete and useful characterization of multidimensional Markov and hidden Markov models along with applications to image analysis. The book provides a survey and comparative development of an exciting and rapidly evolving field of multidimensional Markov and hidden Markov random fields with extensive references to the literature.
Stochastic Image Processing
Author: Chee Sun Won
Publisher: Springer Science & Business Media
ISBN: 9780306481925
Category : Computers
Languages : en
Pages : 192
Book Description
Stochastic Image Processing provides the first thorough treatment of Markov and hidden Markov random fields and their application to image processing. Although promoted as a promising approach for over thirty years, it has only been in the past few years that the theory and algorithms have developed to the point of providing useful solutions to old and new problems in image processing. Markov random fields are a multidimensional extension of Markov chains, but the generalization is complicated by the lack of a natural ordering of pixels in multidimensional spaces. Hidden Markov fields are a natural generalization of the hidden Markov models that have proved essential to the development of modern speech recognition, but again the multidimensional nature of the signals makes them inherently more complicated to handle. This added complexity contributed to the long time required for the development of successful methods and applications. This book collects together a variety of successful approaches to a complete and useful characterization of multidimensional Markov and hidden Markov models along with applications to image analysis. The book provides a survey and comparative development of an exciting and rapidly evolving field of multidimensional Markov and hidden Markov random fields with extensive references to the literature.
Publisher: Springer Science & Business Media
ISBN: 9780306481925
Category : Computers
Languages : en
Pages : 192
Book Description
Stochastic Image Processing provides the first thorough treatment of Markov and hidden Markov random fields and their application to image processing. Although promoted as a promising approach for over thirty years, it has only been in the past few years that the theory and algorithms have developed to the point of providing useful solutions to old and new problems in image processing. Markov random fields are a multidimensional extension of Markov chains, but the generalization is complicated by the lack of a natural ordering of pixels in multidimensional spaces. Hidden Markov fields are a natural generalization of the hidden Markov models that have proved essential to the development of modern speech recognition, but again the multidimensional nature of the signals makes them inherently more complicated to handle. This added complexity contributed to the long time required for the development of successful methods and applications. This book collects together a variety of successful approaches to a complete and useful characterization of multidimensional Markov and hidden Markov models along with applications to image analysis. The book provides a survey and comparative development of an exciting and rapidly evolving field of multidimensional Markov and hidden Markov random fields with extensive references to the literature.
Image Processing and Analysis
Author: Tony F. Chan
Publisher: SIAM
ISBN: 089871589X
Category : Computers
Languages : en
Pages : 414
Book Description
This book develops the mathematical foundation of modern image processing and low-level computer vision, bridging contemporary mathematics with state-of-the-art methodologies in modern image processing, whilst organizing contemporary literature into a coherent and logical structure. The authors have integrated the diversity of modern image processing approaches by revealing the few common threads that connect them to Fourier and spectral analysis, the machinery that image processing has been traditionally built on. The text is systematic and well organized: the geometric, functional, and atomic structures of images are investigated, before moving to a rigorous development and analysis of several image processors. The book is comprehensive and integrative, covering the four most powerful classes of mathematical tools in contemporary image analysis and processing while exploring their intrinsic connections and integration. The material is balanced in theory and computation, following a solid theoretical analysis of model building and performance with computational implementation and numerical examples.
Publisher: SIAM
ISBN: 089871589X
Category : Computers
Languages : en
Pages : 414
Book Description
This book develops the mathematical foundation of modern image processing and low-level computer vision, bridging contemporary mathematics with state-of-the-art methodologies in modern image processing, whilst organizing contemporary literature into a coherent and logical structure. The authors have integrated the diversity of modern image processing approaches by revealing the few common threads that connect them to Fourier and spectral analysis, the machinery that image processing has been traditionally built on. The text is systematic and well organized: the geometric, functional, and atomic structures of images are investigated, before moving to a rigorous development and analysis of several image processors. The book is comprehensive and integrative, covering the four most powerful classes of mathematical tools in contemporary image analysis and processing while exploring their intrinsic connections and integration. The material is balanced in theory and computation, following a solid theoretical analysis of model building and performance with computational implementation and numerical examples.
Bayesian Analysis of Stochastic Process Models
Author: David Insua
Publisher: John Wiley & Sons
ISBN: 1118304039
Category : Mathematics
Languages : en
Pages : 315
Book Description
Bayesian analysis of complex models based on stochastic processes has in recent years become a growing area. This book provides a unified treatment of Bayesian analysis of models based on stochastic processes, covering the main classes of stochastic processing including modeling, computational, inference, forecasting, decision making and important applied models. Key features: Explores Bayesian analysis of models based on stochastic processes, providing a unified treatment. Provides a thorough introduction for research students. Computational tools to deal with complex problems are illustrated along with real life case studies Looks at inference, prediction and decision making. Researchers, graduate and advanced undergraduate students interested in stochastic processes in fields such as statistics, operations research (OR), engineering, finance, economics, computer science and Bayesian analysis will benefit from reading this book. With numerous applications included, practitioners of OR, stochastic modelling and applied statistics will also find this book useful.
Publisher: John Wiley & Sons
ISBN: 1118304039
Category : Mathematics
Languages : en
Pages : 315
Book Description
Bayesian analysis of complex models based on stochastic processes has in recent years become a growing area. This book provides a unified treatment of Bayesian analysis of models based on stochastic processes, covering the main classes of stochastic processing including modeling, computational, inference, forecasting, decision making and important applied models. Key features: Explores Bayesian analysis of models based on stochastic processes, providing a unified treatment. Provides a thorough introduction for research students. Computational tools to deal with complex problems are illustrated along with real life case studies Looks at inference, prediction and decision making. Researchers, graduate and advanced undergraduate students interested in stochastic processes in fields such as statistics, operations research (OR), engineering, finance, economics, computer science and Bayesian analysis will benefit from reading this book. With numerous applications included, practitioners of OR, stochastic modelling and applied statistics will also find this book useful.
A Stochastic Grammar of Images
Author: Song-Chun Zhu
Publisher: Now Publishers Inc
ISBN: 1601980604
Category : Computers
Languages : en
Pages : 120
Book Description
A Stochastic Grammar of Images is the first book to provide a foundational review and perspective of grammatical approaches to computer vision. In its quest for a stochastic and context sensitive grammar of images, it is intended to serve as a unified frame-work of representation, learning, and recognition for a large number of object categories. It starts out by addressing the historic trends in the area and overviewing the main concepts: such as the and-or graph, the parse graph, the dictionary and goes on to learning issues, semantic gaps between symbols and pixels, dataset for learning and algorithms. The proposal grammar presented integrates three prominent representations in the literature: stochastic grammars for composition, Markov (or graphical) models for contexts, and sparse coding with primitives (wavelets). It also combines the structure-based and appearance based methods in the vision literature. At the end of the review, three case studies are presented to illustrate the proposed grammar. A Stochastic Grammar of Images is an important contribution to the literature on structured statistical models in computer vision.
Publisher: Now Publishers Inc
ISBN: 1601980604
Category : Computers
Languages : en
Pages : 120
Book Description
A Stochastic Grammar of Images is the first book to provide a foundational review and perspective of grammatical approaches to computer vision. In its quest for a stochastic and context sensitive grammar of images, it is intended to serve as a unified frame-work of representation, learning, and recognition for a large number of object categories. It starts out by addressing the historic trends in the area and overviewing the main concepts: such as the and-or graph, the parse graph, the dictionary and goes on to learning issues, semantic gaps between symbols and pixels, dataset for learning and algorithms. The proposal grammar presented integrates three prominent representations in the literature: stochastic grammars for composition, Markov (or graphical) models for contexts, and sparse coding with primitives (wavelets). It also combines the structure-based and appearance based methods in the vision literature. At the end of the review, three case studies are presented to illustrate the proposed grammar. A Stochastic Grammar of Images is an important contribution to the literature on structured statistical models in computer vision.
Digital Image Processing
Author: Bernd Jähne
Publisher: Springer Science & Business Media
ISBN: 9783540240358
Category : Technology & Engineering
Languages : en
Pages : 630
Book Description
This long-established and well-received monograph offers an integral view of image processing - from image acquisition to the extraction of the data of interest – written by a physical scientists for other scientists. Supplements discussion of the general concepts is supplemented with examples from applications on PC-based image processing systems and ready-to-use implementations of important algorithms. Completely revised and extended, the most notable extensions being a detailed discussion on random variables and fields, 3-D imaging techniques and a unified approach to regularized parameter estimation.
Publisher: Springer Science & Business Media
ISBN: 9783540240358
Category : Technology & Engineering
Languages : en
Pages : 630
Book Description
This long-established and well-received monograph offers an integral view of image processing - from image acquisition to the extraction of the data of interest – written by a physical scientists for other scientists. Supplements discussion of the general concepts is supplemented with examples from applications on PC-based image processing systems and ready-to-use implementations of important algorithms. Completely revised and extended, the most notable extensions being a detailed discussion on random variables and fields, 3-D imaging techniques and a unified approach to regularized parameter estimation.
Stochastic Modelling in Process Technology
Author: Herold G. Dehling
Publisher: Elsevier
ISBN: 0080548970
Category : Mathematics
Languages : en
Pages : 291
Book Description
There is an ever increasing need for modelling complex processes reliably. Computational modelling techniques, such as CFD and MD may be used as tools to study specific systems, but their emergence has not decreased the need for generic, analytical process models. Multiphase and multicomponent systems, and high-intensity processes displaying a highly complex behaviour are becoming omnipresent in the processing industry. This book discusses an elegant, but little-known technique for formulating process models in process technology: stochastic process modelling. The technique is based on computing the probability distribution for a single particle's position in the process vessel, and/or the particle's properties, as a function of time, rather than - as is traditionally done - basing the model on the formulation and solution of differential conservation equations. Using this technique can greatly simplify the formulation of a model, and even make modelling possible for processes so complex that the traditional method is impracticable. Stochastic modelling has sporadically been used in various branches of process technology under various names and guises. This book gives, as the first, an overview of this work, and shows how these techniques are similar in nature, and make use of the same basic mathematical tools and techniques. The book also demonstrates how stochastic modelling may be implemented by describing example cases, and shows how a stochastic model may be formulated for a case, which cannot be described by formulating and solving differential balance equations. - Introduction to stochastic process modelling as an alternative modelling technique - Shows how stochastic modelling may be succesful where the traditional technique fails - Overview of stochastic modelling in process technology in the research literature - Illustration of the principle by a wide range of practical examples - In-depth and self-contained discussions - Points the way to both mathematical and technological research in a new, rewarding field
Publisher: Elsevier
ISBN: 0080548970
Category : Mathematics
Languages : en
Pages : 291
Book Description
There is an ever increasing need for modelling complex processes reliably. Computational modelling techniques, such as CFD and MD may be used as tools to study specific systems, but their emergence has not decreased the need for generic, analytical process models. Multiphase and multicomponent systems, and high-intensity processes displaying a highly complex behaviour are becoming omnipresent in the processing industry. This book discusses an elegant, but little-known technique for formulating process models in process technology: stochastic process modelling. The technique is based on computing the probability distribution for a single particle's position in the process vessel, and/or the particle's properties, as a function of time, rather than - as is traditionally done - basing the model on the formulation and solution of differential conservation equations. Using this technique can greatly simplify the formulation of a model, and even make modelling possible for processes so complex that the traditional method is impracticable. Stochastic modelling has sporadically been used in various branches of process technology under various names and guises. This book gives, as the first, an overview of this work, and shows how these techniques are similar in nature, and make use of the same basic mathematical tools and techniques. The book also demonstrates how stochastic modelling may be implemented by describing example cases, and shows how a stochastic model may be formulated for a case, which cannot be described by formulating and solving differential balance equations. - Introduction to stochastic process modelling as an alternative modelling technique - Shows how stochastic modelling may be succesful where the traditional technique fails - Overview of stochastic modelling in process technology in the research literature - Illustration of the principle by a wide range of practical examples - In-depth and self-contained discussions - Points the way to both mathematical and technological research in a new, rewarding field
Modelling and Application of Stochastic Processes
Author: Uday B. Desai
Publisher: Springer Science & Business Media
ISBN: 9780898381771
Category : Science
Languages : en
Pages : 310
Book Description
The subject of modelling and application of stochastic processes is too vast to be exhausted in a single volume. In this book, attention is focused on a small subset of this vast subject. The primary emphasis is on realization and approximation of stochastic systems. Recently there has been considerable interest in the stochastic realization problem, and hence, an attempt has been made here to collect in one place some of the more recent approaches and algorithms for solving the stochastic realiza tion problem. Various different approaches for realizing linear minimum-phase systems, linear nonminimum-phase systems, and bilinear systems are presented. These approaches range from time-domain methods to spectral-domain methods. An overview of the chapter contents briefly describes these approaches. Also, in most of these chapters special attention is given to the problem of developing numerically ef ficient algorithms for obtaining reduced-order (approximate) stochastic realizations. On the application side, chapters on use of Markov random fields for modelling and analyzing image signals, use of complementary models for the smoothing problem with missing data, and nonlinear estimation are included. Chapter 1 by Klein and Dickinson develops the nested orthogonal state space realization for ARMA processes. As suggested by the name, nested orthogonal realizations possess two key properties; (i) the state variables are orthogonal, and (ii) the system matrices for the (n + l)st order realization contain as their "upper" n-th order blocks the system matrices from the n-th order realization (nesting property).
Publisher: Springer Science & Business Media
ISBN: 9780898381771
Category : Science
Languages : en
Pages : 310
Book Description
The subject of modelling and application of stochastic processes is too vast to be exhausted in a single volume. In this book, attention is focused on a small subset of this vast subject. The primary emphasis is on realization and approximation of stochastic systems. Recently there has been considerable interest in the stochastic realization problem, and hence, an attempt has been made here to collect in one place some of the more recent approaches and algorithms for solving the stochastic realiza tion problem. Various different approaches for realizing linear minimum-phase systems, linear nonminimum-phase systems, and bilinear systems are presented. These approaches range from time-domain methods to spectral-domain methods. An overview of the chapter contents briefly describes these approaches. Also, in most of these chapters special attention is given to the problem of developing numerically ef ficient algorithms for obtaining reduced-order (approximate) stochastic realizations. On the application side, chapters on use of Markov random fields for modelling and analyzing image signals, use of complementary models for the smoothing problem with missing data, and nonlinear estimation are included. Chapter 1 by Klein and Dickinson develops the nested orthogonal state space realization for ARMA processes. As suggested by the name, nested orthogonal realizations possess two key properties; (i) the state variables are orthogonal, and (ii) the system matrices for the (n + l)st order realization contain as their "upper" n-th order blocks the system matrices from the n-th order realization (nesting property).
Stochastic Geometry for Image Analysis
Author: Xavier Descombes
Publisher: Wiley-ISTE
ISBN: 9781848212404
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
This book develops the stochastic geometry framework for image analysis purpose. Two main frameworks are described: marked point process and random closed sets models. We derive the main issues for defining an appropriate model. The algorithms for sampling and optimizing the models as well as for estimating parameters are reviewed. Numerous applications, covering remote sensing images, biological and medical imaging, are detailed. This book provides all the necessary tools for developing an image analysis application based on modern stochastic modeling.
Publisher: Wiley-ISTE
ISBN: 9781848212404
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
This book develops the stochastic geometry framework for image analysis purpose. Two main frameworks are described: marked point process and random closed sets models. We derive the main issues for defining an appropriate model. The algorithms for sampling and optimizing the models as well as for estimating parameters are reviewed. Numerous applications, covering remote sensing images, biological and medical imaging, are detailed. This book provides all the necessary tools for developing an image analysis application based on modern stochastic modeling.
Mathematical Nonlinear Image Processing
Author: Edward R. Dougherty
Publisher: Springer Science & Business Media
ISBN: 1461531489
Category : Computers
Languages : en
Pages : 173
Book Description
Mathematical Nonlinear Image Processing deals with a fast growing research area. The development of the subject springs from two factors: (1) the great expansion of nonlinear methods applied to problems in imaging and vision, and (2) the degree to which nonlinear approaches are both using and fostering new developments in diverse areas of mathematics. Mathematical Nonlinear Image Processing will be of interest to people working in the areas of applied mathematics as well as researchers in computer vision. Mathematical Nonlinear Image Processing is an edited volume of original research. It has also been published as a special issue of the Journal of Mathematical Imaging and Vision. (Volume 2, Issue 2/3).
Publisher: Springer Science & Business Media
ISBN: 1461531489
Category : Computers
Languages : en
Pages : 173
Book Description
Mathematical Nonlinear Image Processing deals with a fast growing research area. The development of the subject springs from two factors: (1) the great expansion of nonlinear methods applied to problems in imaging and vision, and (2) the degree to which nonlinear approaches are both using and fostering new developments in diverse areas of mathematics. Mathematical Nonlinear Image Processing will be of interest to people working in the areas of applied mathematics as well as researchers in computer vision. Mathematical Nonlinear Image Processing is an edited volume of original research. It has also been published as a special issue of the Journal of Mathematical Imaging and Vision. (Volume 2, Issue 2/3).
Generalized Stochastic Processes
Author: Stefan Schäffler
Publisher: Springer
ISBN: 3319787683
Category : Mathematics
Languages : en
Pages : 190
Book Description
This textbook shall serve a double purpose: first of all, it is a book about generalized stochastic processes, a very important but highly neglected part of probability theory which plays an outstanding role in noise modelling. Secondly, this textbook is a guide to noise modelling for mathematicians and engineers to foster the interdisciplinary discussion between mathematicians (to provide effective noise models) and engineers (to be familiar with the mathematical backround of noise modelling in order to handle noise models in an optimal way).Two appendices on "A Short Course in Probability Theory" and "Spectral Theory of Stochastic Processes" plus a well-choosen set of problems and solutions round this compact textbook off.
Publisher: Springer
ISBN: 3319787683
Category : Mathematics
Languages : en
Pages : 190
Book Description
This textbook shall serve a double purpose: first of all, it is a book about generalized stochastic processes, a very important but highly neglected part of probability theory which plays an outstanding role in noise modelling. Secondly, this textbook is a guide to noise modelling for mathematicians and engineers to foster the interdisciplinary discussion between mathematicians (to provide effective noise models) and engineers (to be familiar with the mathematical backround of noise modelling in order to handle noise models in an optimal way).Two appendices on "A Short Course in Probability Theory" and "Spectral Theory of Stochastic Processes" plus a well-choosen set of problems and solutions round this compact textbook off.