Selected Strengthening Techniques for the Seismic Retrofit of Unreinforced Masonry Buildings

Selected Strengthening Techniques for the Seismic Retrofit of Unreinforced Masonry Buildings PDF Author: Najif Ismail
Publisher:
ISBN:
Category : Historic buildings
Languages : en
Pages : 273

Get Book Here

Book Description
Approximately two thirds of the fatalities caused by earthquakes in the last one hundred years have resulted due to the collapse of unreinforced masonry (URM) buildings. Poor performance of URM buildings was also observed in recent earthquakes such as the 2005 Pakistan earthquake, the 2008 Sichuan earthquake, the 2009 L'Aquila earthquake and the 2010/2011 Canterbury (New Zealand) earthquake sequence. The New Zealand URM building stock consists of mostly pre-1931 structures, with many of these buildings contributing to the country's architectural heritage. It was revealed in a recent survey that many of New Zealand's URM buildings have insufficient capacity to endure even a moderate earthquake but the concerns of heritage preservation makes demolition of these historic URM buildings undesirable, which results in seismic retrofit being necessary. Many seismic retrofit solutions have already been implemented in New Zealand, but the experimental database on their seismic behaviour is scarce. Consequently, the research reported here was undertaken to investigate the performance of URM walls when seismically retrofitted using three strengthening techniques, which were selected after an extensive literature review. The selected strengthening techniques are (i) unbonded posttensioning using threaded steel rods and sheathed greased strands, (ii) near surface mounting of high strength twisted stainless steel bars (NSM-TS), and (iii) surface application of polymer textile reinforced mortar (TRM). The selected seismic strengthening techniques were adapted for New Zealand URM buildings, and the performance of URM walls seismically strengthened using the adapted strengthening techniques was investigated by performing numerous full scale laboratory based and field tests. Based on the results of the experimental program empirical design equations were derived and checked for accuracy by comparing with current design equations and with experimental results. Finally, case studies were conducted to demonstrate application of these strengthening techniques for the seismic retrofit of historic URM buildings.

Selected Strengthening Techniques for the Seismic Retrofit of Unreinforced Masonry Buildings

Selected Strengthening Techniques for the Seismic Retrofit of Unreinforced Masonry Buildings PDF Author: Najif Ismail
Publisher:
ISBN:
Category : Historic buildings
Languages : en
Pages : 273

Get Book Here

Book Description
Approximately two thirds of the fatalities caused by earthquakes in the last one hundred years have resulted due to the collapse of unreinforced masonry (URM) buildings. Poor performance of URM buildings was also observed in recent earthquakes such as the 2005 Pakistan earthquake, the 2008 Sichuan earthquake, the 2009 L'Aquila earthquake and the 2010/2011 Canterbury (New Zealand) earthquake sequence. The New Zealand URM building stock consists of mostly pre-1931 structures, with many of these buildings contributing to the country's architectural heritage. It was revealed in a recent survey that many of New Zealand's URM buildings have insufficient capacity to endure even a moderate earthquake but the concerns of heritage preservation makes demolition of these historic URM buildings undesirable, which results in seismic retrofit being necessary. Many seismic retrofit solutions have already been implemented in New Zealand, but the experimental database on their seismic behaviour is scarce. Consequently, the research reported here was undertaken to investigate the performance of URM walls when seismically retrofitted using three strengthening techniques, which were selected after an extensive literature review. The selected strengthening techniques are (i) unbonded posttensioning using threaded steel rods and sheathed greased strands, (ii) near surface mounting of high strength twisted stainless steel bars (NSM-TS), and (iii) surface application of polymer textile reinforced mortar (TRM). The selected seismic strengthening techniques were adapted for New Zealand URM buildings, and the performance of URM walls seismically strengthened using the adapted strengthening techniques was investigated by performing numerous full scale laboratory based and field tests. Based on the results of the experimental program empirical design equations were derived and checked for accuracy by comparing with current design equations and with experimental results. Finally, case studies were conducted to demonstrate application of these strengthening techniques for the seismic retrofit of historic URM buildings.

Strengthening Techniques for the Seismic Retrofit of Urm Buildings

Strengthening Techniques for the Seismic Retrofit of Urm Buildings PDF Author: Najif Ismail
Publisher: LAP Lambert Academic Publishing
ISBN: 9783659155611
Category : Building, Brick
Languages : en
Pages : 304

Get Book Here

Book Description
Seismic retrofitting of unreinforced masonry (URM) buildings is not a new concept and many techniques have already been used around the world for such improvements in their earthquake performance but limited technical literature is available on their seismic performance. This motivated the research study reported herein, which is one of only a few studies where full scale cyclic testing of strengthened URM walls was performed, and where the test walls were constructed using real or close replication of prevalent historic URM materials. Provided also is a comprehensive review of existing strengthening techniques, with a brief account on associated design concepts, implementation procedures and heritage conservation considerations. Additionally, a set of guidelines are also provided along with worked examples to facilitate a well-conceived seismic retrofit design.

Techniques for the Seismic Rehabilitation of Existing Buildings

Techniques for the Seismic Rehabilitation of Existing Buildings PDF Author:
Publisher: FEMA
ISBN:
Category : Buildings
Languages : en
Pages : 572

Get Book Here

Book Description


Strengthening and Retrofitting of Existing Structures

Strengthening and Retrofitting of Existing Structures PDF Author:
Publisher:
ISBN: 9781642241815
Category :
Languages : en
Pages : 375

Get Book Here

Book Description
Seismic retrofitting is the modification of existing structures to make them more resistant to seismic activity, ground motion, or soil failure due to earthquakes. The planning of changes to existing buildings differs from new planning through an important condition; the existing construction must be taken as the basis of all planning and building actions. The need for seismic retrofitting of an existing building can arise due to several reasons like: building not designed to code, subsequent updating of code and design practice, subsequent upgrading of seismic zone, deterioration of strength and aging, modification of existing structure, change in use of the building, etc. Seismic retrofit is primarily applied to achieve public safety, with various levels of structure and material survivability determined by economic considerations. In recent years, an increased urgency has been felt to strengthen the deficient buildings, as part of active disaster mitigation, and to work out the modifications that may be made to an existing structure to improve the structural performance during an earthquake. Seismic retrofitting schemes can be either global or local, based on how many members of the structures they are used for. Global Retrofit methods include conventional methods (increase seismic resistance of existing structures) or non-conventional methods (reduction of seismic demand). Strengthening and Retrofitting of Existing Structures is a compendium of cutting-edge trends of the research and existing practices in strengthening and retrofitting of structural elements, as well as the findings of a research endeavor initiated by the authors to investigate and develop a robust structural retrofitting scheme by utilizing elastomeric polymers to enhance the resistance of reinforced concrete (RC) structures. It addresses in detail specific techniques for the strengthening of traditional constructions, reinforced concrete buildings, bridges and their foundations. It also presents insight into the key issues relevant to seismic retrofit of concrete frame buildings. Many guidelines are reviewed regarding seismic rehabilitation of school, office, hospital and apartment buildings.

Techniques for the Seismic Rehabilitation of Existing Buildings

Techniques for the Seismic Rehabilitation of Existing Buildings PDF Author: U. s. Department of Homeland Security
Publisher: Createspace Independent Publishing Platform
ISBN: 9781484111239
Category : Social Science
Languages : en
Pages : 584

Get Book Here

Book Description
A considerable number of buildings in the existing building stock of the United States present a risk of poor performance in earthquakes because there was no seismic design code available or required when they were constructed, because the seismic design code used was immature and had flaws, or because original construction quality or environmental deterioration has compromised the original design. The practice of improving the seismic performance of existing buildings—known variously as seismic rehabilitation, seismic retrofitting, or seismic strengthening—began in the U.S. in California in the 1940s following the Garrison Act in 1939. This Act required seismic evaluations for pre-1933 school buildings. Substandard buildings were required to be retrofit or abandoned by 1975. Many school buildings were improved by strengthening, particularly in the late 1960s and early 1970s as the deadline approached. Local efforts to mitigate the risks from unreinforced masonry buildings (URMs) also began in this time period. In 1984, the Federal Emergency Management Agency (FEMA) began its program to encourage the reduction of seismic hazards posed by existing older buildings throughout the country. Recognizing that building rehabilitation design is far more constrained than new building design and that special techniques are needed to insert new lateral elements, tie them to the existing structure, and generally develop complete seismic load paths, a document was published for this purpose in 1992. FEMA 172, NEHRP Handbook of Techniques for the Seismic Rehabilitation of Existing Buildings (FEMA, 1992b), was intended to identify and describe generally accepted rehabilitation techniques. The art and science of seismic rehabilitation has grown tremendously since that time with federal, state, and local government programs to upgrade public buildings, with local ordinances that mandate rehabilitation of certain building types, and with a growing concern among private owners about the seismic performance of their buildings. In addition, following the demand for better understanding of performance of older buildings and the need for more efficient and less disruptive methods to upgrade, laboratory research on the subject has exploded worldwide, particularly since the nonlinear methods proposed for FEMA 273 became developed. The large volume of rehabilitation work and research now completed has resulted in considerable refinement of early techniques and development of many new techniques, some confined to the research lab and some widely used in industry. Like FEMA 172, this document describes the techniques currently judged to be most commonly used or potentially to be most useful. Furthermore, it has been formatted to take advantage of the ongoing use of typical building types in FEMA documents concerning existing buildings, and to facilitate the addition of techniques in the future. The primary purpose of this document is to provide a selected compilation of seismic rehabilitation techniques that are practical and effective. The descriptions of techniques include detailing and constructability tips that might not be otherwise available to engineering offices or individual structural engineers who have limited experience in seismic rehabilitation of existing buildings. A secondary purpose is to provide guidance on which techniques are commonly used to mitigate specific seismic deficiencies in various model building types. The goals of the document are to: Describe rehabilitation techniques commonly used for various model building types, Incorporate relevant research results, Discuss associated details and construction issues, Provide suggestions to engineers on the use of new products and techniques.

Earthquake-resistant Design Of Masonry Buildings

Earthquake-resistant Design Of Masonry Buildings PDF Author: Miha Tomazevic
Publisher: World Scientific
ISBN: 1783262524
Category : Technology & Engineering
Languages : en
Pages : 281

Get Book Here

Book Description
In the last few decades, a considerable amount of experimental and analytical research on the seismic behaviour of masonry walls and buildings has been carried out. The investigations resulted in the development of methods for seismic analysis and design, as well as new technologies and construction systems. After many centuries of traditional use and decades of allowable stress design, clear concepts for limit state verification of masonry buildings under earthquake loading have recently been introduced in codes of practice.Although this book is not a review of the state-of-the-art of masonry structures in earthquake zones, an attempt has been made to balance the discussion on recent code requirements, state-of-the-art methods of earthquake-resistant design and the author's research work, in order to render the book useful for a broader application in design practice. An attempt has also been made to present, in a condensed but easy to understand way, all the information needed for earthquake-resistant design of masonry buildings constructed using traditional systems. The basic concepts of limit state verification are presented and equations for seismic resistance verification of masonry walls of all types of construction, (unreinforced, confined and reinforced) as well as masonry-infilled reinforced concrete frames, are addressed. A method for seismic resistance verification, compatible with recent code requirements, is also discussed. In all cases, experimental results are used to explain the proposed methods and equations.An important part of this book is dedicated to the discussion of the problems of repair, retrofit and rehabilitation of existing masonry buildings, including historical structures in urban centres. Methods of strengthening masonry walls as well as improving the structural integrity of existing buildings are described in detail. Wherever possible, experimental evidence regarding the effectiveness of the proposed strengthening methods is given.

Guidelines for Seismic Retrofit of Existing Buildings

Guidelines for Seismic Retrofit of Existing Buildings PDF Author:
Publisher:
ISBN:
Category : Juvenile Nonfiction
Languages : en
Pages : 74

Get Book Here

Book Description
This renamed version of the former Uniform code for building conservation guidelines for retrofitting unreinforced masonry bearing wall buildings, reinforced concrete and reinforced masonry buildings, wood frame residential buildings, and concrete with masonry infill buildings.

Fastenings for Seismic Retrofitting

Fastenings for Seismic Retrofitting PDF Author: Comité euro-international du béton
Publisher: Thomas Telford
ISBN: 0727725564
Category : Anchorage (Structural engineering)
Languages : en
Pages : 52

Get Book Here

Book Description
The economic consequences and loss of life make earthquake disasters catastrophic anywhere in the world. Seismic retrofitting, or repair, of buildings is an essential component for mitigating the effects of earthquakes. This state-of-the-art report reviews and introduces the latest design concepts and methods for seismic retrofitting throughout the world, with emphasis on the use of fastening systems.

Architectural Considerations in the Seismic Retrofit of Unreinforced Masonry Heritage Buildings in New Zealand

Architectural Considerations in the Seismic Retrofit of Unreinforced Masonry Heritage Buildings in New Zealand PDF Author: Cass Oliver Goodwin
Publisher:
ISBN:
Category : Building, Brick
Languages : en
Pages : 215

Get Book Here

Book Description


Seismic Strengthening of Unreinforced Masonry Buildings

Seismic Strengthening of Unreinforced Masonry Buildings PDF Author: Kit M. Wong
Publisher:
ISBN:
Category : Buildings
Languages : en
Pages : 132

Get Book Here

Book Description