Author: Piotr A. Rodnyi
Publisher: CRC Press
ISBN: 0429611811
Category : Science
Languages : en
Pages : 240
Book Description
During the last ten to fifteen years, researchers have made considerable progress in the study of inorganic scintillators. New scintillation materials have been investigated, novel scintillation mechanisms have been discovered, and additional scintillator applications have appeared. Demand continues for new and improved scintillation materials for a variety of applications including nuclear and high energy physics, astrophysics, medical imaging, geophysical exploration, radiation detection, and many other fields. However, until now there have been no books available that address in detail the complex scintillation processes associated with these new developments. Now, a world leader in the theory and applications of scintillation processes integrates the latest scientific advances of scintillation into a new work, Physical Processes in Inorganic Scintillators. Written by distinguished researcher Piotr Rodnyi, this volume explores this challenging subject, explains the complexities of scintillation from a modern point of view, and illuminates the way to the development of better scintillation materials. This unique work first defines the fundamental physical processes underlying scintillation and governing the primary scintillation characteristics of light output, decay time, emission spectrum, and radiation hardness. The book then discusses the complicated mechanisms of energy conversion and transformation in inorganic scintillators. The section on the role of defects in energy transfer and scintillation efficiency will be of special interest. Throughout, the author does not offer complicated derivations of equations but, instead, presents useful equations with practical results.
Physical Processes in Inorganic Scintillators
Author: Piotr A. Rodnyi
Publisher: CRC Press
ISBN: 0429611811
Category : Science
Languages : en
Pages : 240
Book Description
During the last ten to fifteen years, researchers have made considerable progress in the study of inorganic scintillators. New scintillation materials have been investigated, novel scintillation mechanisms have been discovered, and additional scintillator applications have appeared. Demand continues for new and improved scintillation materials for a variety of applications including nuclear and high energy physics, astrophysics, medical imaging, geophysical exploration, radiation detection, and many other fields. However, until now there have been no books available that address in detail the complex scintillation processes associated with these new developments. Now, a world leader in the theory and applications of scintillation processes integrates the latest scientific advances of scintillation into a new work, Physical Processes in Inorganic Scintillators. Written by distinguished researcher Piotr Rodnyi, this volume explores this challenging subject, explains the complexities of scintillation from a modern point of view, and illuminates the way to the development of better scintillation materials. This unique work first defines the fundamental physical processes underlying scintillation and governing the primary scintillation characteristics of light output, decay time, emission spectrum, and radiation hardness. The book then discusses the complicated mechanisms of energy conversion and transformation in inorganic scintillators. The section on the role of defects in energy transfer and scintillation efficiency will be of special interest. Throughout, the author does not offer complicated derivations of equations but, instead, presents useful equations with practical results.
Publisher: CRC Press
ISBN: 0429611811
Category : Science
Languages : en
Pages : 240
Book Description
During the last ten to fifteen years, researchers have made considerable progress in the study of inorganic scintillators. New scintillation materials have been investigated, novel scintillation mechanisms have been discovered, and additional scintillator applications have appeared. Demand continues for new and improved scintillation materials for a variety of applications including nuclear and high energy physics, astrophysics, medical imaging, geophysical exploration, radiation detection, and many other fields. However, until now there have been no books available that address in detail the complex scintillation processes associated with these new developments. Now, a world leader in the theory and applications of scintillation processes integrates the latest scientific advances of scintillation into a new work, Physical Processes in Inorganic Scintillators. Written by distinguished researcher Piotr Rodnyi, this volume explores this challenging subject, explains the complexities of scintillation from a modern point of view, and illuminates the way to the development of better scintillation materials. This unique work first defines the fundamental physical processes underlying scintillation and governing the primary scintillation characteristics of light output, decay time, emission spectrum, and radiation hardness. The book then discusses the complicated mechanisms of energy conversion and transformation in inorganic scintillators. The section on the role of defects in energy transfer and scintillation efficiency will be of special interest. Throughout, the author does not offer complicated derivations of equations but, instead, presents useful equations with practical results.
Physical Processes in Inorganic Scintillators
Author: Piotr A. Rodnyi
Publisher: CRC Press
ISBN: 042960629X
Category : Science
Languages : en
Pages : 246
Book Description
During the last ten to fifteen years, researchers have made considerable progress in the study of inorganic scintillators. New scintillation materials have been investigated, novel scintillation mechanisms have been discovered, and additional scintillator applications have appeared. Demand continues for new and improved scintillation materials for a variety of applications including nuclear and high energy physics, astrophysics, medical imaging, geophysical exploration, radiation detection, and many other fields. However, until now there have been no books available that address in detail the complex scintillation processes associated with these new developments. Now, a world leader in the theory and applications of scintillation processes integrates the latest scientific advances of scintillation into a new work, Physical Processes in Inorganic Scintillators. Written by distinguished researcher Piotr Rodnyi, this volume explores this challenging subject, explains the complexities of scintillation from a modern point of view, and illuminates the way to the development of better scintillation materials. This unique work first defines the fundamental physical processes underlying scintillation and governing the primary scintillation characteristics of light output, decay time, emission spectrum, and radiation hardness. The book then discusses the complicated mechanisms of energy conversion and transformation in inorganic scintillators. The section on the role of defects in energy transfer and scintillation efficiency will be of special interest. Throughout, the author does not offer complicated derivations of equations but, instead, presents useful equations with practical results.
Publisher: CRC Press
ISBN: 042960629X
Category : Science
Languages : en
Pages : 246
Book Description
During the last ten to fifteen years, researchers have made considerable progress in the study of inorganic scintillators. New scintillation materials have been investigated, novel scintillation mechanisms have been discovered, and additional scintillator applications have appeared. Demand continues for new and improved scintillation materials for a variety of applications including nuclear and high energy physics, astrophysics, medical imaging, geophysical exploration, radiation detection, and many other fields. However, until now there have been no books available that address in detail the complex scintillation processes associated with these new developments. Now, a world leader in the theory and applications of scintillation processes integrates the latest scientific advances of scintillation into a new work, Physical Processes in Inorganic Scintillators. Written by distinguished researcher Piotr Rodnyi, this volume explores this challenging subject, explains the complexities of scintillation from a modern point of view, and illuminates the way to the development of better scintillation materials. This unique work first defines the fundamental physical processes underlying scintillation and governing the primary scintillation characteristics of light output, decay time, emission spectrum, and radiation hardness. The book then discusses the complicated mechanisms of energy conversion and transformation in inorganic scintillators. The section on the role of defects in energy transfer and scintillation efficiency will be of special interest. Throughout, the author does not offer complicated derivations of equations but, instead, presents useful equations with practical results.
Physics of Fast Processes in Scintillators
Author: Mikhail Korzhik
Publisher: Springer Nature
ISBN: 3030219666
Category : Science
Languages : en
Pages : 258
Book Description
This book presents the current advances in understanding of the fast excitation transfer processes in inorganic scintillation materials, the discovery of new materials exhibiting excellent time resolution, and the results on the evaluation of timing limits for scintillation detectors. The book considers in-depth basic principles of primary processes in energy relaxation, which play a key role in creating scintillating centers to meet a growing demand for knowledge to develop new materials combining high energy and time resolutions. The rate of relaxation varies. However, the goal is to make it extremely fast, occurring within the ps domain or even shorter. The book focuses on fast processes in scintillation materials. This approach enables in-depth understanding of fundamental processes in scintillation and supports the efforts to push the time resolution of scintillation detectors towards 10 ps target. Sophisticated theoretical and advanced experimental research conducted in the last decade is reviewed. Engineering and control of the energy transfer processes in the scintillation materials are addressed. The new era in development of instrumentation for detection of ionizing radiation in high- energy physics experiments, medical imaging and industrial applications is introduced. This book reviews modern trends in the description of the scintillation build up processes in inorganic materials, transient phenomena, and engineering of the scintillation properties. It also provides reliable background of scientific and educational information to stimulate new ideas for readers to implement in their research and engineering. The book is aimed at providing a coherent updated background of scientific and instructive information to stimulate new ideas for readers in their research and engineering.
Publisher: Springer Nature
ISBN: 3030219666
Category : Science
Languages : en
Pages : 258
Book Description
This book presents the current advances in understanding of the fast excitation transfer processes in inorganic scintillation materials, the discovery of new materials exhibiting excellent time resolution, and the results on the evaluation of timing limits for scintillation detectors. The book considers in-depth basic principles of primary processes in energy relaxation, which play a key role in creating scintillating centers to meet a growing demand for knowledge to develop new materials combining high energy and time resolutions. The rate of relaxation varies. However, the goal is to make it extremely fast, occurring within the ps domain or even shorter. The book focuses on fast processes in scintillation materials. This approach enables in-depth understanding of fundamental processes in scintillation and supports the efforts to push the time resolution of scintillation detectors towards 10 ps target. Sophisticated theoretical and advanced experimental research conducted in the last decade is reviewed. Engineering and control of the energy transfer processes in the scintillation materials are addressed. The new era in development of instrumentation for detection of ionizing radiation in high- energy physics experiments, medical imaging and industrial applications is introduced. This book reviews modern trends in the description of the scintillation build up processes in inorganic materials, transient phenomena, and engineering of the scintillation properties. It also provides reliable background of scientific and educational information to stimulate new ideas for readers to implement in their research and engineering. The book is aimed at providing a coherent updated background of scientific and instructive information to stimulate new ideas for readers in their research and engineering.
Radiation, Ionization, and Detection in Nuclear Medicine
Author: Tapan K. Gupta
Publisher: Springer Science & Business Media
ISBN: 3642340768
Category : Medical
Languages : en
Pages : 529
Book Description
This book will serve as the definitive source of detailed information on radiation, ionization, and detection in nuclear medicine. It opens by considering fundamental aspects of nuclear radiation, including dose and energy, sources, and shielding. Subsequent chapters cover the full range of relevant topics, including the detection and measurement of radiation exposure (with detailed information on mathematical modelling); medical imaging; the different types of radiation detector and their working principles; basic principles of and experimental techniques for deposition of scintillating materials; device fabrication; the optical and electrical behaviors of radiation detectors; and the instrumentation used in nuclear medicine and its application. The book will be an invaluable source of information for academia, industry, practitioners, and researchers.
Publisher: Springer Science & Business Media
ISBN: 3642340768
Category : Medical
Languages : en
Pages : 529
Book Description
This book will serve as the definitive source of detailed information on radiation, ionization, and detection in nuclear medicine. It opens by considering fundamental aspects of nuclear radiation, including dose and energy, sources, and shielding. Subsequent chapters cover the full range of relevant topics, including the detection and measurement of radiation exposure (with detailed information on mathematical modelling); medical imaging; the different types of radiation detector and their working principles; basic principles of and experimental techniques for deposition of scintillating materials; device fabrication; the optical and electrical behaviors of radiation detectors; and the instrumentation used in nuclear medicine and its application. The book will be an invaluable source of information for academia, industry, practitioners, and researchers.
Inorganic Scintillators for Detector Systems
Author: Paul Lecoq
Publisher: Springer
ISBN: 9783540277668
Category : Science
Languages : en
Pages : 251
Book Description
The development of new scintillators as components of modern detector systems is increasingly defined by the end user's needs. This book provides an introduction to this emerging topic at the interface of physics and materials sciences, with emphasis on bulk inorganic scintillators. After surveying the end user's needs in a vast range of applications, ranging from astrophysics to industrial R and D, the authors move on to review scintillating mechanisms and the properties of the most important materials used. A chapter on crystal engineering and examples of recent developments in the field of high-energy physics and medical imaging introduce the reader to the practical aspects. This book will benefit researchers and scientists working in academic and industrial R and D related to the development of scintillators.
Publisher: Springer
ISBN: 9783540277668
Category : Science
Languages : en
Pages : 251
Book Description
The development of new scintillators as components of modern detector systems is increasingly defined by the end user's needs. This book provides an introduction to this emerging topic at the interface of physics and materials sciences, with emphasis on bulk inorganic scintillators. After surveying the end user's needs in a vast range of applications, ranging from astrophysics to industrial R and D, the authors move on to review scintillating mechanisms and the properties of the most important materials used. A chapter on crystal engineering and examples of recent developments in the field of high-energy physics and medical imaging introduce the reader to the practical aspects. This book will benefit researchers and scientists working in academic and industrial R and D related to the development of scintillators.
Inorganic Phosphors
Author: William M. Yen
Publisher: CRC Press
ISBN: 0203506324
Category : Science
Languages : en
Pages : 484
Book Description
Inorganic Phosphors: Compositions, Preparation and Optical Properties addresses practical and theoretical aspects of inorganic phosphors used in lighting and display applications. Authors Yen and Weber present the synthesis of phosphors in a ...cookbook... style that features nearly 300 ...recipes... using the most up-to-date guidelines and methods
Publisher: CRC Press
ISBN: 0203506324
Category : Science
Languages : en
Pages : 484
Book Description
Inorganic Phosphors: Compositions, Preparation and Optical Properties addresses practical and theoretical aspects of inorganic phosphors used in lighting and display applications. Authors Yen and Weber present the synthesis of phosphors in a ...cookbook... style that features nearly 300 ...recipes... using the most up-to-date guidelines and methods
Phosphor Handbook
Author: Ru-Shi Liu
Publisher: CRC Press
ISBN: 1000513556
Category : Technology & Engineering
Languages : en
Pages : 866
Book Description
A benchmark publication, the first edition of the Phosphor Handbook, published in 1998, set the standard for references in the field. The second edition, updated and published in 2007, began exploring new and emerging fields. However, in the last 14 years, since the second edition was published, many notable advances and broader phosphor applications have occurred. Completely revised, updated, and expanded into three separate volumes, this third edition of the Handbook covers the most recent developments in phosphor research, characterization, and applications. This volume on ‘Experimental Methods for Phosphor Evaluation and Characterization’ addresses the theoretical and experimental methods for phosphor evaluation and characterization. The chapters in the book cover: First principle and DFT analysis of optical, structural, and chemical properties of phosphors Phosphor design and tuning through structure and solid solution Design for IR, NIR, and narrowband emission and thermally stable phosphors and nanophosphors Detailed illustration for measurement of the absolute photoluminescence quantum yield of phosphors Phosphor analysis through photoionization, high pressure, and synchrotron radiation studies
Publisher: CRC Press
ISBN: 1000513556
Category : Technology & Engineering
Languages : en
Pages : 866
Book Description
A benchmark publication, the first edition of the Phosphor Handbook, published in 1998, set the standard for references in the field. The second edition, updated and published in 2007, began exploring new and emerging fields. However, in the last 14 years, since the second edition was published, many notable advances and broader phosphor applications have occurred. Completely revised, updated, and expanded into three separate volumes, this third edition of the Handbook covers the most recent developments in phosphor research, characterization, and applications. This volume on ‘Experimental Methods for Phosphor Evaluation and Characterization’ addresses the theoretical and experimental methods for phosphor evaluation and characterization. The chapters in the book cover: First principle and DFT analysis of optical, structural, and chemical properties of phosphors Phosphor design and tuning through structure and solid solution Design for IR, NIR, and narrowband emission and thermally stable phosphors and nanophosphors Detailed illustration for measurement of the absolute photoluminescence quantum yield of phosphors Phosphor analysis through photoionization, high pressure, and synchrotron radiation studies
Measurement and Detection of Radiation
Author: Nicholas Tsoulfanidis
Publisher: CRC Press
ISBN: 1482215489
Category : Medical
Languages : en
Pages : 595
Book Description
A Sound Introduction to Radiation Detection and Measurement for Newcomers to Nuclear Science and Engineering Since the publication of the bestselling third edition, there have been advances in the field of radiation detection, most notably in practical applications. Incorporating these important developments, Measurement and Detection of Radiation, Fourth Edition provides the most up-to-date and accessible introduction to radiation detector materials, systems, and applications. New to the Fourth Edition New chapters on nuclear forensics and nuclear medicine instrumentation, covering basic principles and applications as well as open-ended problems that encourage more in-depth research Updated references and bibliographies New and expanded problems As useful to students and nuclear professionals as its popular predecessors, this fourth edition continues to carefully explain the latest radiation detector technology and measurement techniques. It also discusses the correct ways to perform measurements and analyze results following current health physics procedures.
Publisher: CRC Press
ISBN: 1482215489
Category : Medical
Languages : en
Pages : 595
Book Description
A Sound Introduction to Radiation Detection and Measurement for Newcomers to Nuclear Science and Engineering Since the publication of the bestselling third edition, there have been advances in the field of radiation detection, most notably in practical applications. Incorporating these important developments, Measurement and Detection of Radiation, Fourth Edition provides the most up-to-date and accessible introduction to radiation detector materials, systems, and applications. New to the Fourth Edition New chapters on nuclear forensics and nuclear medicine instrumentation, covering basic principles and applications as well as open-ended problems that encourage more in-depth research Updated references and bibliographies New and expanded problems As useful to students and nuclear professionals as its popular predecessors, this fourth edition continues to carefully explain the latest radiation detector technology and measurement techniques. It also discusses the correct ways to perform measurements and analyze results following current health physics procedures.
Nanocomposite, Ceramic, and Thin Film Scintillators
Author: Martin Nikl
Publisher: CRC Press
ISBN: 9814745235
Category : Science
Languages : en
Pages : 351
Book Description
The literature so far has reviewed only single-crystal and, up to some extent, optical ceramic scintillators. This book introduces and describes in detail the research and development in thin film scintillators, glass ceramics, as well as nanocomposite and optical ceramics prepared by spark plasma sintering. It also features example of an in-depth study of a ZnO-based powder phosphor material. Both technology description and various characterization aspects are provided together with application hints. No other book has been published so far that includes and reviews the scintillator materials covered in this book with their specific technologies. Moreover, technological description is merged with detailed characterization, and the application potential is discussed as well. This book is intended for a wide audience, including postgraduate and PhD students and scientists working in the field of scintillators and phosphors. The extended introductory text, which has a textbook character, will be of immense benefit to students and non-specialists, too.
Publisher: CRC Press
ISBN: 9814745235
Category : Science
Languages : en
Pages : 351
Book Description
The literature so far has reviewed only single-crystal and, up to some extent, optical ceramic scintillators. This book introduces and describes in detail the research and development in thin film scintillators, glass ceramics, as well as nanocomposite and optical ceramics prepared by spark plasma sintering. It also features example of an in-depth study of a ZnO-based powder phosphor material. Both technology description and various characterization aspects are provided together with application hints. No other book has been published so far that includes and reviews the scintillator materials covered in this book with their specific technologies. Moreover, technological description is merged with detailed characterization, and the application potential is discussed as well. This book is intended for a wide audience, including postgraduate and PhD students and scientists working in the field of scintillators and phosphors. The extended introductory text, which has a textbook character, will be of immense benefit to students and non-specialists, too.
Handbook of Particle Detection and Imaging
Author: Claus Grupen
Publisher: Springer Science & Business Media
ISBN: 3642132715
Category : Science
Languages : en
Pages : 1251
Book Description
The handbook centers on detection techniques in the field of particle physics, medical imaging and related subjects. It is structured into three parts. The first one is dealing with basic ideas of particle detectors, followed by applications of these devices in high energy physics and other fields. In the last part the large field of medical imaging using similar detection techniques is described. The different chapters of the book are written by world experts in their field. Clear instructions on the detection techniques and principles in terms of relevant operation parameters for scientists and graduate students are given.Detailed tables and diagrams will make this a very useful handbook for the application of these techniques in many different fields like physics, medicine, biology and other areas of natural science.
Publisher: Springer Science & Business Media
ISBN: 3642132715
Category : Science
Languages : en
Pages : 1251
Book Description
The handbook centers on detection techniques in the field of particle physics, medical imaging and related subjects. It is structured into three parts. The first one is dealing with basic ideas of particle detectors, followed by applications of these devices in high energy physics and other fields. In the last part the large field of medical imaging using similar detection techniques is described. The different chapters of the book are written by world experts in their field. Clear instructions on the detection techniques and principles in terms of relevant operation parameters for scientists and graduate students are given.Detailed tables and diagrams will make this a very useful handbook for the application of these techniques in many different fields like physics, medicine, biology and other areas of natural science.