Physical Basis for Materials Synthesis Using Biomineralization

Physical Basis for Materials Synthesis Using Biomineralization PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Since the dawn of life on earth, organisms have directed the crystallization of inorganic ions from solution to form minerals that meet specific biological needs. The resulting materials often exhibit remarkable properties, making the processes involved in biomineralization of interest to a wide array of scientific disciplines. From a geochemical standpoint, perhaps the most important consequence is that CaCO3 biomineral formation occurs in the Oceans on such a large scale that it influences many aspects of seawater chemistry and results in sequestration of carbon in the form of carbonate sediments. In this manner, the products of biomineralization are preserved in the rock record and serve as an extensive chronicle of the interplay between biota and the earth system environment. From the point of view of materials synthesis, biological control over epitaxy is an elegant example of self-organization in complex molecular systems. Through selective introduction of peptides and proteins, living organisms deterministically modify nucleation, step kinetics, surface morphologies, and facet stabilities to produce nanophase materials, topologically complex single-crystals, and multi-layer composite. The resulting materials have biological functions as diverse as structural supports, porous filtration media, grinding and cutting tools, lenses, gravity sensors and magnetic guidance systems. As Table I shows, calcium carbonate minerals are ubiquitous amongst these biomineral structures. In addition, calcium carbonate is a well studied material that is easily crystallized and has known solution chemistry. Consequently, the calcium carbonate system provides an excellent model for investigating biomineralization processes. Surprisingly, in spite of the identification of carbonate biogenesis as a critical contributor to the carbon reservoir mediating climate change, and the enormous potential of biomimetic synthesis for production of tailored, crystalline nano- and micro-structured materials, the fundamental physical controls on carbonate biomineral formation remain poorly understood. Carbonates are formed in diverse environments almost exclusively by living organisms. These naturally occurring marine and fresh water minerals most commonly occur as the polymorphs of calcite, aragonite and vaterite which are nucleated and grown in the exoskeletons and tissues of marine and freshwater organisms ranging from simple bacteria and algae to crustaceans, molluscs, or sponges. It is known that the soluble fraction associated with mineralizing parts of organisms plays a primary role in crystal formation. In the formation of molluscan shells, this fraction is distinguished by the common presence of aspartic acid rich amino acid mixtures. It is also known that carbonates exposed to different polyamino acids exhibit different crystal habits. Belcher et al. showed that exposing growing CaCO3 crystals alternately to solutions containing polyanionic proteins associated with the aragonitic and calcitic layers of mollusc shells led to sequential switching of the crystal structure of the newly grown material between that of aragonite and calcite. Further work has demonstrated that these protein mixtures alter the morphology of the calcite growth surface and that they contain two fractions effecting growth: a step-binding fraction that inhibits step advancement on calcite surfaces, and a surface binding fraction that appears to lead to the subsequent nucleation of aragonite. Wierzbicki et al. found that polyaspartate molecules (ASP20) bind to calcite surfaces. Finally, modeling of ASP15 binding to calcite planes predicts large binding energies for well defined orientations. This and related evidence shows that systematic relationships between crystal morphology and surface interactions with the reactive groups of the organic molecules must exist. However, the interplay between surface chemistry and the physical processes of nucleation and crystal growth are poorly understood because, until recently only ex situ biochemical studies focusing on the effect of changes in solution chemistry and/or surface stereo-chemistry on macroscopic crystal morphology had been performed.

Physical Basis for Materials Synthesis Using Biomineralization

Physical Basis for Materials Synthesis Using Biomineralization PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Since the dawn of life on earth, organisms have directed the crystallization of inorganic ions from solution to form minerals that meet specific biological needs. The resulting materials often exhibit remarkable properties, making the processes involved in biomineralization of interest to a wide array of scientific disciplines. From a geochemical standpoint, perhaps the most important consequence is that CaCO3 biomineral formation occurs in the Oceans on such a large scale that it influences many aspects of seawater chemistry and results in sequestration of carbon in the form of carbonate sediments. In this manner, the products of biomineralization are preserved in the rock record and serve as an extensive chronicle of the interplay between biota and the earth system environment. From the point of view of materials synthesis, biological control over epitaxy is an elegant example of self-organization in complex molecular systems. Through selective introduction of peptides and proteins, living organisms deterministically modify nucleation, step kinetics, surface morphologies, and facet stabilities to produce nanophase materials, topologically complex single-crystals, and multi-layer composite. The resulting materials have biological functions as diverse as structural supports, porous filtration media, grinding and cutting tools, lenses, gravity sensors and magnetic guidance systems. As Table I shows, calcium carbonate minerals are ubiquitous amongst these biomineral structures. In addition, calcium carbonate is a well studied material that is easily crystallized and has known solution chemistry. Consequently, the calcium carbonate system provides an excellent model for investigating biomineralization processes. Surprisingly, in spite of the identification of carbonate biogenesis as a critical contributor to the carbon reservoir mediating climate change, and the enormous potential of biomimetic synthesis for production of tailored, crystalline nano- and micro-structured materials, the fundamental physical controls on carbonate biomineral formation remain poorly understood. Carbonates are formed in diverse environments almost exclusively by living organisms. These naturally occurring marine and fresh water minerals most commonly occur as the polymorphs of calcite, aragonite and vaterite which are nucleated and grown in the exoskeletons and tissues of marine and freshwater organisms ranging from simple bacteria and algae to crustaceans, molluscs, or sponges. It is known that the soluble fraction associated with mineralizing parts of organisms plays a primary role in crystal formation. In the formation of molluscan shells, this fraction is distinguished by the common presence of aspartic acid rich amino acid mixtures. It is also known that carbonates exposed to different polyamino acids exhibit different crystal habits. Belcher et al. showed that exposing growing CaCO3 crystals alternately to solutions containing polyanionic proteins associated with the aragonitic and calcitic layers of mollusc shells led to sequential switching of the crystal structure of the newly grown material between that of aragonite and calcite. Further work has demonstrated that these protein mixtures alter the morphology of the calcite growth surface and that they contain two fractions effecting growth: a step-binding fraction that inhibits step advancement on calcite surfaces, and a surface binding fraction that appears to lead to the subsequent nucleation of aragonite. Wierzbicki et al. found that polyaspartate molecules (ASP20) bind to calcite surfaces. Finally, modeling of ASP15 binding to calcite planes predicts large binding energies for well defined orientations. This and related evidence shows that systematic relationships between crystal morphology and surface interactions with the reactive groups of the organic molecules must exist. However, the interplay between surface chemistry and the physical processes of nucleation and crystal growth are poorly understood because, until recently only ex situ biochemical studies focusing on the effect of changes in solution chemistry and/or surface stereo-chemistry on macroscopic crystal morphology had been performed.

Handbook of Biomineralization

Handbook of Biomineralization PDF Author: Peter Behrens
Publisher: John Wiley & Sons
ISBN: 9783527318056
Category : Science
Languages : en
Pages : 456

Get Book Here

Book Description
This first comprehensive overview of the modern aspects of biomineralization represents life and materials science at its best: Bioinspired pathways are the hot topics in many disciplines and this holds especially true for biomineralization. Here, the editors -- well-known members of associations and prestigious institutes -- have assembled an international team of renowned authors to provide first-hand research results. This second volume deals with biometic model systems in biomineralization, including the biomineral approach to bionics, bioinspired materials synthesis and bio-supported materials chemistry, encapsulation and the imaging of internal nanostructures of biominerals. An interdisciplinary must-have account, for biochemists, bioinorganic chemists, lecturers in chemistry and biochemistry, materials scientists, biologists, and solid state physicists.

Research Methods in Biomineralization Science

Research Methods in Biomineralization Science PDF Author:
Publisher: Elsevier
ISBN: 0124166555
Category : Science
Languages : en
Pages : 703

Get Book Here

Book Description
This new volume of Methods in Enzymology continues the legacy of this premier serial with quality chapters authored by leaders in the field. This volume covers research methods in biomineralization science, and includes sections on such topics as determining solution chemistry, structure and nucleation; probing structure and dynamics at surfaces; and interfaces mapping biomineral and morphology and ultrastructure. - Continues the legacy of this premier serial with quality chapters authored by leaders in the field - Covers research methods in biomineralization science - Contains sections on such topics as and includes sections on such topics as determining solution chemistry, structure and nucleation; probing structure and dynamics at surfaces; and interfaces mapping biomineral and morphology and ultrastructure

Energy and Water Development Appropriations for 1998: Department of Energy

Energy and Water Development Appropriations for 1998: Department of Energy PDF Author: United States. Congress. House. Committee on Appropriations. Subcommittee on Energy and Water Development
Publisher:
ISBN:
Category : Energy development
Languages : en
Pages : 1262

Get Book Here

Book Description


Energy and Water Development Appropriations for 1998

Energy and Water Development Appropriations for 1998 PDF Author: United States. Congress. House. Committee on Appropriations. Subcommittee on Energy and Water Development
Publisher:
ISBN:
Category : Energy development
Languages : en
Pages : 1278

Get Book Here

Book Description


Biomineralization

Biomineralization PDF Author: Stephen Mann
Publisher:
ISBN: 9780198508823
Category : Science
Languages : en
Pages : 220

Get Book Here

Book Description


Biomineralization

Biomineralization PDF Author: Patricia Martin Dove
Publisher: Mineralogical Society of Amer
ISBN: 9780939950669
Category : Science
Languages : en
Pages : 381

Get Book Here

Book Description
Volume 54 of Reviews in Mineralogy and Geochemistry focuses upon the various processes by which organisms direct the formation of minerals. Our framework of examining biominerals from the viewpoints of major mineralization strategies distinguishes this volume from most previous reviews. The review begins by introducing the reader to over-arching principles that are needed to investigate biomineralization phenomena and shows the current state of knowledge regarding the major approaches to mineralization that organisms have developed over the course of Earth history. By exploring the complexities that underlie the "synthesis" of biogenic materials, and therefore the basis for how compositions and structures of biominerals are mediated (or not), we believe this volume will be instrumental in propelling studies of biomineralization to a new level of research questions that are grounded in an understanding of the underlying biological phenomena.

Energy and Water Development Appropriations for 1999

Energy and Water Development Appropriations for 1999 PDF Author: United States. Congress. House. Committee on Appropriations. Subcommittee on Energy and Water Development
Publisher:
ISBN:
Category : Energy development
Languages : en
Pages : 2032

Get Book Here

Book Description


Energy and Water Development Appropriations for 1999: Secretary of Energy, Departmental administration

Energy and Water Development Appropriations for 1999: Secretary of Energy, Departmental administration PDF Author: United States. Congress. House. Committee on Appropriations. Subcommittee on Energy and Water Development
Publisher:
ISBN:
Category : Energy development
Languages : en
Pages : 1890

Get Book Here

Book Description


Handbook of Biomineralization, 3 Volume Set

Handbook of Biomineralization, 3 Volume Set PDF Author: Edmund Bäuerlein
Publisher: Wiley-VCH
ISBN: 9783527316410
Category : Science
Languages : en
Pages : 1349

Get Book Here

Book Description
This first comprehensive overview of the modern aspects of biomineralization represents life and materials science at its best: Bioinspired pathways are the hot topics in many disciplines and this holds especially true for biomineralization. Here, the editors -- all well-known members of associations and prestigious institutes -- have assembled an international team of renowned authors to provide first-hand research results. From the contents: VOLUME 1: BIOLOGICAL ASPECTS AND STRUCTURE FORMATION Silica-Hydrated Polysilicondioxide Iron Sulfides and Oxides Calcium Carbonates and Sulfates Calcium Phosphates VOLUME 2: BIOMIMETIC AND BIOINSPIRED CHEMISTRY Biometic Model Systems in Biomineralization The Biomineral Approach to Bionics Bio-inspired Materials Synthesis Bio-supported Materials Chemistry Protein Cages as Size-contrained Reaction Vessels Encapsulation Imaging of Internal Nanostructures of Biominerals VOLUME 3: MEDICAL AND CLINICAL ASPECTS Bone Teeth Pathological Calcifications An interdisciplinary must-have account, for biochemists, bioinorganic chemists, lecturers in chemistry and biochemistry, materials scientists, biologists, and solid state physicists. With forewords by Jeremy D. Pickett-Heaps, Stephen Mann, and Wolfgang Pompe.