Obstacle Problems in Mathematical Physics

Obstacle Problems in Mathematical Physics PDF Author: J.-F. Rodrigues
Publisher: Elsevier
ISBN: 008087245X
Category : Mathematics
Languages : en
Pages : 369

Get Book Here

Book Description
The aim of this research monograph is to present a general account of the applicability of elliptic variational inequalities to the important class of free boundary problems of obstacle type from a unifying point of view of classical Mathematical Physics.The first part of the volume introduces some obstacle type problems which can be reduced to variational inequalities. Part II presents some of the main aspects of the theory of elliptic variational inequalities, from the abstract hilbertian framework to the smoothness of the variational solution, discussing in general the properties of the free boundary and including some results on the obstacle Plateau problem. The last part examines the application to free boundary problems, namely the lubrication-cavitation problem, the elastoplastic problem, the Signorini (or the boundary obstacle) problem, the dam problem, the continuous casting problem, the electrochemical machining problem and the problem of the flow with wake in a channel past a profile.

Obstacle Problems in Mathematical Physics

Obstacle Problems in Mathematical Physics PDF Author: J.-F. Rodrigues
Publisher: Elsevier
ISBN: 008087245X
Category : Mathematics
Languages : en
Pages : 369

Get Book Here

Book Description
The aim of this research monograph is to present a general account of the applicability of elliptic variational inequalities to the important class of free boundary problems of obstacle type from a unifying point of view of classical Mathematical Physics.The first part of the volume introduces some obstacle type problems which can be reduced to variational inequalities. Part II presents some of the main aspects of the theory of elliptic variational inequalities, from the abstract hilbertian framework to the smoothness of the variational solution, discussing in general the properties of the free boundary and including some results on the obstacle Plateau problem. The last part examines the application to free boundary problems, namely the lubrication-cavitation problem, the elastoplastic problem, the Signorini (or the boundary obstacle) problem, the dam problem, the continuous casting problem, the electrochemical machining problem and the problem of the flow with wake in a channel past a profile.

Regularity of Free Boundaries in Obstacle-Type Problems

Regularity of Free Boundaries in Obstacle-Type Problems PDF Author: Arshak Petrosyan
Publisher: American Mathematical Soc.
ISBN: 0821887947
Category : Mathematics
Languages : en
Pages : 233

Get Book Here

Book Description
The regularity theory of free boundaries flourished during the late 1970s and early 1980s and had a major impact in several areas of mathematics, mathematical physics, and industrial mathematics, as well as in applications. Since then the theory continued to evolve. Numerous new ideas, techniques, and methods have been developed, and challenging new problems in applications have arisen. The main intention of the authors of this book is to give a coherent introduction to the study of the regularity properties of free boundaries for a particular type of problems, known as obstacle-type problems. The emphasis is on the methods developed in the past two decades. The topics include optimal regularity, nondegeneracy, rescalings and blowups, classification of global solutions, several types of monotonicity formulas, Lipschitz, $C^1$, as well as higher regularity of the free boundary, structure of the singular set, touch of the free and fixed boundaries, and more. The book is based on lecture notes for the courses and mini-courses given by the authors at various locations and should be accessible to advanced graduate students and researchers in analysis and partial differential equations.

The obstacle problem

The obstacle problem PDF Author: Luis Angel Caffarelli
Publisher: Edizioni della Normale
ISBN: 9788876422492
Category : Mathematics
Languages : en
Pages : 0

Get Book Here

Book Description
The material presented here corresponds to Fermi lectures that I was invited to deliver at the Scuola Normale di Pisa in the spring of 1998. The obstacle problem consists in studying the properties of minimizers of the Dirichlet integral in a domain D of Rn, among all those configurations u with prescribed boundary values and costrained to remain in D above a prescribed obstacle F. In the Hilbert space H1(D) of all those functions with square integrable gradient, we consider the closed convex set K of functions u with fixed boundary value and which are greater than F in D. There is a unique point in K minimizing the Dirichlet integral. That is called the solution to the obstacle problem.

European Congress of Mathematics

European Congress of Mathematics PDF Author: Carles Casacuberta
Publisher: Birkhäuser
ISBN: 3034882661
Category : Mathematics
Languages : en
Pages : 630

Get Book Here

Book Description
This is the second volume of the proceedings of the third European Congress of Mathematics. Volume I presents the speeches delivered at the Congress, the list of lectures, and short summaries of the achievements of the prize winners as well as papers by plenary and parallel speakers. The second volume collects articles by prize winners and speakers of the mini-symposia. This two-volume set thus gives an overview of the state of the art in many fields of mathematics and is therefore of interest to every professional mathematician.

Variational Inequalities and Flow in Porous Media

Variational Inequalities and Flow in Porous Media PDF Author: Michel Chipot
Publisher:
ISBN:
Category : Fluid dynamics
Languages : en
Pages : 140

Get Book Here

Book Description


The Mathematics of Shock Reflection-Diffraction and von Neumann's Conjectures

The Mathematics of Shock Reflection-Diffraction and von Neumann's Conjectures PDF Author: Gui-Qiang G Chen
Publisher: Princeton University Press
ISBN: 0691160554
Category : Mathematics
Languages : en
Pages : 832

Get Book Here

Book Description
This book offers a survey of recent developments in the analysis of shock reflection-diffraction, a detailed presentation of original mathematical proofs of von Neumann's conjectures for potential flow, and a collection of related results and new techniques in the analysis of partial differential equations (PDEs), as well as a set of fundamental open problems for further development. Shock waves are fundamental in nature. They are governed by the Euler equations or their variants, generally in the form of nonlinear conservation laws—PDEs of divergence form. When a shock hits an obstacle, shock reflection-diffraction configurations take shape. To understand the fundamental issues involved, such as the structure and transition criteria of different configuration patterns, it is essential to establish the global existence, regularity, and structural stability of shock reflection-diffraction solutions. This involves dealing with several core difficulties in the analysis of nonlinear PDEs—mixed type, free boundaries, and corner singularities—that also arise in fundamental problems in diverse areas such as continuum mechanics, differential geometry, mathematical physics, and materials science. Presenting recently developed approaches and techniques, which will be useful for solving problems with similar difficulties, this book opens up new research opportunities.

Geometric Measure Theory and Free Boundary Problems

Geometric Measure Theory and Free Boundary Problems PDF Author: Guido De Philippis
Publisher: Springer Nature
ISBN: 303065799X
Category : Mathematics
Languages : en
Pages : 138

Get Book Here

Book Description
This volume covers contemporary aspects of geometric measure theory with a focus on applications to partial differential equations, free boundary problems and water waves. It is based on lectures given at the 2019 CIME summer school “Geometric Measure Theory and Applications – From Geometric Analysis to Free Boundary Problems” which took place in Cetraro, Italy, under the scientific direction of Matteo Focardi and Emanuele Spadaro. Providing a description of the structure of measures satisfying certain differential constraints, and covering regularity theory for Bernoulli type free boundary problems and water waves as well as regularity theory for the obstacle problems and the developments leading to applications to the Stefan problem, this volume will be of interest to students and researchers in mathematical analysis and its applications.

Kernel Functions and Elliptic Differential Equations in Mathematical Physics

Kernel Functions and Elliptic Differential Equations in Mathematical Physics PDF Author: Stefan Bergman
Publisher: Courier Corporation
ISBN: 0486445534
Category : Mathematics
Languages : en
Pages : 450

Get Book Here

Book Description
This text focuses on the theory of boundary value problems in partial differential equations, which plays a central role in various fields of pure and applied mathematics, theoretical physics, and engineering. Geared toward upper-level undergraduates and graduate students, it discusses a portion of the theory from a unifying point of view and provides a systematic and self-contained introduction to each branch of the applications it employs.

Recent Advances in Differential Equations and Mathematical Physics

Recent Advances in Differential Equations and Mathematical Physics PDF Author: Nikolai Chernov
Publisher: American Mathematical Soc.
ISBN: 0821838407
Category : Mathematics
Languages : en
Pages : 354

Get Book Here

Book Description
Surveys topics in differential equations that are associated with mathematical physics. This book includes such topics as asymptotic formulas for the ground-state energy of fermionic gas, $J$-self adjoint Dirac operators, and spectral theory of Schrodinger operators. It is suitable for mathematicians and physicists.

Nonlinear Partial Differential Equations for Future Applications

Nonlinear Partial Differential Equations for Future Applications PDF Author: Shigeaki Koike
Publisher: Springer
ISBN: 9789813348240
Category : Mathematics
Languages : en
Pages : 261

Get Book Here

Book Description
This volume features selected, original, and peer-reviewed papers on topics from a series of workshops on Nonlinear Partial Differential Equations for Future Applications that were held in 2017 at Tohoku University in Japan. The contributions address an abstract maximal regularity with applications to parabolic equations, stability, and bifurcation for viscous compressible Navier–Stokes equations, new estimates for a compressible Gross–Pitaevskii–Navier–Stokes system, singular limits for the Keller–Segel system in critical spaces, the dynamic programming principle for stochastic optimal control, two kinds of regularity machineries for elliptic obstacle problems, and new insight on topology of nodal sets of high-energy eigenfunctions of the Laplacian. This book aims to exhibit various theories and methods that appear in the study of nonlinear partial differential equations.