Author: Ioannis Z. Emiris
Publisher: Springer Science & Business Media
ISBN: 1441909990
Category : Mathematics
Languages : en
Pages : 244
Book Description
An original motivation for algebraic geometry was to understand curves and surfaces in three dimensions. Recent theoretical and technological advances in areas such as robotics, computer vision, computer-aided geometric design and molecular biology, together with the increased availability of computational resources, have brought these original questions once more into the forefront of research. One particular challenge is to combine applicable methods from algebraic geometry with proven techniques from piecewise-linear computational geometry (such as Voronoi diagrams and hyperplane arrangements) to develop tools for treating curved objects. These research efforts may be summarized under the term nonlinear computational geometry. This volume grew out of an IMA workshop on Nonlinear Computational Geometry in May/June 2007 (organized by I.Z. Emiris, R. Goldman, F. Sottile, T. Theobald) which gathered leading experts in this emerging field. The research and expository articles in the volume are intended to provide an overview of nonlinear computational geometry. Since the topic involves computational geometry, algebraic geometry, and geometric modeling, the volume has contributions from all of these areas. By addressing a broad range of issues from purely theoretical and algorithmic problems, to implementation and practical applications this volume conveys the spirit of the IMA workshop.
Nonlinear Computational Geometry
Author: Ioannis Z. Emiris
Publisher: Springer Science & Business Media
ISBN: 1441909990
Category : Mathematics
Languages : en
Pages : 244
Book Description
An original motivation for algebraic geometry was to understand curves and surfaces in three dimensions. Recent theoretical and technological advances in areas such as robotics, computer vision, computer-aided geometric design and molecular biology, together with the increased availability of computational resources, have brought these original questions once more into the forefront of research. One particular challenge is to combine applicable methods from algebraic geometry with proven techniques from piecewise-linear computational geometry (such as Voronoi diagrams and hyperplane arrangements) to develop tools for treating curved objects. These research efforts may be summarized under the term nonlinear computational geometry. This volume grew out of an IMA workshop on Nonlinear Computational Geometry in May/June 2007 (organized by I.Z. Emiris, R. Goldman, F. Sottile, T. Theobald) which gathered leading experts in this emerging field. The research and expository articles in the volume are intended to provide an overview of nonlinear computational geometry. Since the topic involves computational geometry, algebraic geometry, and geometric modeling, the volume has contributions from all of these areas. By addressing a broad range of issues from purely theoretical and algorithmic problems, to implementation and practical applications this volume conveys the spirit of the IMA workshop.
Publisher: Springer Science & Business Media
ISBN: 1441909990
Category : Mathematics
Languages : en
Pages : 244
Book Description
An original motivation for algebraic geometry was to understand curves and surfaces in three dimensions. Recent theoretical and technological advances in areas such as robotics, computer vision, computer-aided geometric design and molecular biology, together with the increased availability of computational resources, have brought these original questions once more into the forefront of research. One particular challenge is to combine applicable methods from algebraic geometry with proven techniques from piecewise-linear computational geometry (such as Voronoi diagrams and hyperplane arrangements) to develop tools for treating curved objects. These research efforts may be summarized under the term nonlinear computational geometry. This volume grew out of an IMA workshop on Nonlinear Computational Geometry in May/June 2007 (organized by I.Z. Emiris, R. Goldman, F. Sottile, T. Theobald) which gathered leading experts in this emerging field. The research and expository articles in the volume are intended to provide an overview of nonlinear computational geometry. Since the topic involves computational geometry, algebraic geometry, and geometric modeling, the volume has contributions from all of these areas. By addressing a broad range of issues from purely theoretical and algorithmic problems, to implementation and practical applications this volume conveys the spirit of the IMA workshop.
Introduction to Non-linear Algebra
Author: Valeri? Valer?evich Dolotin
Publisher: World Scientific
ISBN: 9812708006
Category : Mathematics
Languages : en
Pages : 286
Book Description
Literaturverz. S. 267 - 269
Publisher: World Scientific
ISBN: 9812708006
Category : Mathematics
Languages : en
Pages : 286
Book Description
Literaturverz. S. 267 - 269
Nonlinear Computational Solid Mechanics
Author: Jamshid Ghaboussi
Publisher: CRC Press
ISBN: 1498746136
Category : Mathematics
Languages : en
Pages : 397
Book Description
This book presents the fundamentals of nonlinear mechanics within a modern computational approach based mainly on finite element methods. Both material and geometric nonlinearities are treated. The topics build up from the mechanics of finite deformation of solid bodies through to nonlinear structural behaviour including buckling, bifurcation and snap-through. The principles are illustrated with a series of solved problems. This book serves as a text book for a second year graduate course and as a reference for practitioners using nonlinear analysis in engineering and design.
Publisher: CRC Press
ISBN: 1498746136
Category : Mathematics
Languages : en
Pages : 397
Book Description
This book presents the fundamentals of nonlinear mechanics within a modern computational approach based mainly on finite element methods. Both material and geometric nonlinearities are treated. The topics build up from the mechanics of finite deformation of solid bodies through to nonlinear structural behaviour including buckling, bifurcation and snap-through. The principles are illustrated with a series of solved problems. This book serves as a text book for a second year graduate course and as a reference for practitioners using nonlinear analysis in engineering and design.
Convex Analysis and Nonlinear Geometric Elliptic Equations
Author: Ilya J. Bakelman
Publisher: Springer Science & Business Media
ISBN: 3642698816
Category : Mathematics
Languages : en
Pages : 524
Book Description
Investigations in modem nonlinear analysis rely on ideas, methods and prob lems from various fields of mathematics, mechanics, physics and other applied sciences. In the second half of the twentieth century many prominent, ex emplary problems in nonlinear analysis were subject to intensive study and examination. The united ideas and methods of differential geometry, topology, differential equations and functional analysis as well as other areas of research in mathematics were successfully applied towards the complete solution of com plex problems in nonlinear analysis. It is not possible to encompass in the scope of one book all concepts, ideas, methods and results related to nonlinear analysis. Therefore, we shall restrict ourselves in this monograph to nonlinear elliptic boundary value problems as well as global geometric problems. In order that we may examine these prob lems, we are provided with a fundamental vehicle: The theory of convex bodies and hypersurfaces. In this book we systematically present a series of centrally significant results obtained in the second half of the twentieth century up to the present time. Particular attention is given to profound interconnections between various divisions in nonlinear analysis. The theory of convex functions and bodies plays a crucial role because the ellipticity of differential equations is closely connected with the local and global convexity properties of their solutions. Therefore it is necessary to have a sufficiently large amount of material devoted to the theory of convex bodies and functions and their connections with partial differential equations.
Publisher: Springer Science & Business Media
ISBN: 3642698816
Category : Mathematics
Languages : en
Pages : 524
Book Description
Investigations in modem nonlinear analysis rely on ideas, methods and prob lems from various fields of mathematics, mechanics, physics and other applied sciences. In the second half of the twentieth century many prominent, ex emplary problems in nonlinear analysis were subject to intensive study and examination. The united ideas and methods of differential geometry, topology, differential equations and functional analysis as well as other areas of research in mathematics were successfully applied towards the complete solution of com plex problems in nonlinear analysis. It is not possible to encompass in the scope of one book all concepts, ideas, methods and results related to nonlinear analysis. Therefore, we shall restrict ourselves in this monograph to nonlinear elliptic boundary value problems as well as global geometric problems. In order that we may examine these prob lems, we are provided with a fundamental vehicle: The theory of convex bodies and hypersurfaces. In this book we systematically present a series of centrally significant results obtained in the second half of the twentieth century up to the present time. Particular attention is given to profound interconnections between various divisions in nonlinear analysis. The theory of convex functions and bodies plays a crucial role because the ellipticity of differential equations is closely connected with the local and global convexity properties of their solutions. Therefore it is necessary to have a sufficiently large amount of material devoted to the theory of convex bodies and functions and their connections with partial differential equations.
Dynamical Systems in Neuroscience
Author: Eugene M. Izhikevich
Publisher: MIT Press
ISBN: 0262514206
Category : Medical
Languages : en
Pages : 459
Book Description
Explains the relationship of electrophysiology, nonlinear dynamics, and the computational properties of neurons, with each concept presented in terms of both neuroscience and mathematics and illustrated using geometrical intuition. In order to model neuronal behavior or to interpret the results of modeling studies, neuroscientists must call upon methods of nonlinear dynamics. This book offers an introduction to nonlinear dynamical systems theory for researchers and graduate students in neuroscience. It also provides an overview of neuroscience for mathematicians who want to learn the basic facts of electrophysiology. Dynamical Systems in Neuroscience presents a systematic study of the relationship of electrophysiology, nonlinear dynamics, and computational properties of neurons. It emphasizes that information processing in the brain depends not only on the electrophysiological properties of neurons but also on their dynamical properties. The book introduces dynamical systems, starting with one- and two-dimensional Hodgkin-Huxley-type models and continuing to a description of bursting systems. Each chapter proceeds from the simple to the complex, and provides sample problems at the end. The book explains all necessary mathematical concepts using geometrical intuition; it includes many figures and few equations, making it especially suitable for non-mathematicians. Each concept is presented in terms of both neuroscience and mathematics, providing a link between the two disciplines. Nonlinear dynamical systems theory is at the core of computational neuroscience research, but it is not a standard part of the graduate neuroscience curriculum—or taught by math or physics department in a way that is suitable for students of biology. This book offers neuroscience students and researchers a comprehensive account of concepts and methods increasingly used in computational neuroscience. An additional chapter on synchronization, with more advanced material, can be found at the author's website, www.izhikevich.com.
Publisher: MIT Press
ISBN: 0262514206
Category : Medical
Languages : en
Pages : 459
Book Description
Explains the relationship of electrophysiology, nonlinear dynamics, and the computational properties of neurons, with each concept presented in terms of both neuroscience and mathematics and illustrated using geometrical intuition. In order to model neuronal behavior or to interpret the results of modeling studies, neuroscientists must call upon methods of nonlinear dynamics. This book offers an introduction to nonlinear dynamical systems theory for researchers and graduate students in neuroscience. It also provides an overview of neuroscience for mathematicians who want to learn the basic facts of electrophysiology. Dynamical Systems in Neuroscience presents a systematic study of the relationship of electrophysiology, nonlinear dynamics, and computational properties of neurons. It emphasizes that information processing in the brain depends not only on the electrophysiological properties of neurons but also on their dynamical properties. The book introduces dynamical systems, starting with one- and two-dimensional Hodgkin-Huxley-type models and continuing to a description of bursting systems. Each chapter proceeds from the simple to the complex, and provides sample problems at the end. The book explains all necessary mathematical concepts using geometrical intuition; it includes many figures and few equations, making it especially suitable for non-mathematicians. Each concept is presented in terms of both neuroscience and mathematics, providing a link between the two disciplines. Nonlinear dynamical systems theory is at the core of computational neuroscience research, but it is not a standard part of the graduate neuroscience curriculum—or taught by math or physics department in a way that is suitable for students of biology. This book offers neuroscience students and researchers a comprehensive account of concepts and methods increasingly used in computational neuroscience. An additional chapter on synchronization, with more advanced material, can be found at the author's website, www.izhikevich.com.
Nonlinear Finite Element Methods
Author: Peter Wriggers
Publisher: Springer Science & Business Media
ISBN: 3540710019
Category : Technology & Engineering
Languages : en
Pages : 566
Book Description
Finite element methods have become ever more important to engineers as tools for design and optimization, now even for solving non-linear technological problems. However, several aspects must be considered for finite-element simulations which are specific for non-linear problems: These problems require the knowledge and the understanding of theoretical foundations and their finite-element discretization as well as algorithms for solving the non-linear equations. This book provides the reader with the required knowledge covering the complete field of finite element analyses in solid mechanics. It is written for advanced students in engineering fields but serves also as an introduction into non-linear simulation for the practising engineer.
Publisher: Springer Science & Business Media
ISBN: 3540710019
Category : Technology & Engineering
Languages : en
Pages : 566
Book Description
Finite element methods have become ever more important to engineers as tools for design and optimization, now even for solving non-linear technological problems. However, several aspects must be considered for finite-element simulations which are specific for non-linear problems: These problems require the knowledge and the understanding of theoretical foundations and their finite-element discretization as well as algorithms for solving the non-linear equations. This book provides the reader with the required knowledge covering the complete field of finite element analyses in solid mechanics. It is written for advanced students in engineering fields but serves also as an introduction into non-linear simulation for the practising engineer.
Handbook of Discrete and Computational Geometry
Author: Csaba D. Toth
Publisher: CRC Press
ISBN: 1498711421
Category : Computers
Languages : en
Pages : 1951
Book Description
The Handbook of Discrete and Computational Geometry is intended as a reference book fully accessible to nonspecialists as well as specialists, covering all major aspects of both fields. The book offers the most important results and methods in discrete and computational geometry to those who use them in their work, both in the academic world—as researchers in mathematics and computer science—and in the professional world—as practitioners in fields as diverse as operations research, molecular biology, and robotics. Discrete geometry has contributed significantly to the growth of discrete mathematics in recent years. This has been fueled partly by the advent of powerful computers and by the recent explosion of activity in the relatively young field of computational geometry. This synthesis between discrete and computational geometry lies at the heart of this Handbook. A growing list of application fields includes combinatorial optimization, computer-aided design, computer graphics, crystallography, data analysis, error-correcting codes, geographic information systems, motion planning, operations research, pattern recognition, robotics, solid modeling, and tomography.
Publisher: CRC Press
ISBN: 1498711421
Category : Computers
Languages : en
Pages : 1951
Book Description
The Handbook of Discrete and Computational Geometry is intended as a reference book fully accessible to nonspecialists as well as specialists, covering all major aspects of both fields. The book offers the most important results and methods in discrete and computational geometry to those who use them in their work, both in the academic world—as researchers in mathematics and computer science—and in the professional world—as practitioners in fields as diverse as operations research, molecular biology, and robotics. Discrete geometry has contributed significantly to the growth of discrete mathematics in recent years. This has been fueled partly by the advent of powerful computers and by the recent explosion of activity in the relatively young field of computational geometry. This synthesis between discrete and computational geometry lies at the heart of this Handbook. A growing list of application fields includes combinatorial optimization, computer-aided design, computer graphics, crystallography, data analysis, error-correcting codes, geographic information systems, motion planning, operations research, pattern recognition, robotics, solid modeling, and tomography.
Polyhedral and Algebraic Methods in Computational Geometry
Author: Michael Joswig
Publisher: Springer Science & Business Media
ISBN: 1447148177
Category : Mathematics
Languages : en
Pages : 251
Book Description
Polyhedral and Algebraic Methods in Computational Geometry provides a thorough introduction into algorithmic geometry and its applications. It presents its primary topics from the viewpoints of discrete, convex and elementary algebraic geometry. The first part of the book studies classical problems and techniques that refer to polyhedral structures. The authors include a study on algorithms for computing convex hulls as well as the construction of Voronoi diagrams and Delone triangulations. The second part of the book develops the primary concepts of (non-linear) computational algebraic geometry. Here, the book looks at Gröbner bases and solving systems of polynomial equations. The theory is illustrated by applications in computer graphics, curve reconstruction and robotics. Throughout the book, interconnections between computational geometry and other disciplines (such as algebraic geometry, optimization and numerical mathematics) are established. Polyhedral and Algebraic Methods in Computational Geometry is directed towards advanced undergraduates in mathematics and computer science, as well as towards engineering students who are interested in the applications of computational geometry.
Publisher: Springer Science & Business Media
ISBN: 1447148177
Category : Mathematics
Languages : en
Pages : 251
Book Description
Polyhedral and Algebraic Methods in Computational Geometry provides a thorough introduction into algorithmic geometry and its applications. It presents its primary topics from the viewpoints of discrete, convex and elementary algebraic geometry. The first part of the book studies classical problems and techniques that refer to polyhedral structures. The authors include a study on algorithms for computing convex hulls as well as the construction of Voronoi diagrams and Delone triangulations. The second part of the book develops the primary concepts of (non-linear) computational algebraic geometry. Here, the book looks at Gröbner bases and solving systems of polynomial equations. The theory is illustrated by applications in computer graphics, curve reconstruction and robotics. Throughout the book, interconnections between computational geometry and other disciplines (such as algebraic geometry, optimization and numerical mathematics) are established. Polyhedral and Algebraic Methods in Computational Geometry is directed towards advanced undergraduates in mathematics and computer science, as well as towards engineering students who are interested in the applications of computational geometry.
Nonlinear Computational Structural Mechanics
Author: Pierre Ladeveze
Publisher: Springer Science & Business Media
ISBN: 1461214327
Category : Technology & Engineering
Languages : en
Pages : 230
Book Description
This book treats computational modeling of structures in which strong nonlinearities are present. It is therefore a work in mechanics and engineering, although the discussion centers on methods that are considered parts of applied mathematics. The task is to simulate numerically the behavior of a structure under various imposed excitations, forces, and displacements, and then to determine the resulting damage to the structure, and ultimately to optimize it so as to minimize the damage, subject to various constraints. The method used is iterative: at each stage an approximation to the displacements, strains, and stresses throughout the structure is computated and over all times in the interval of interest. This method leads to a general approach for understanding structural models and the necessary approximations.
Publisher: Springer Science & Business Media
ISBN: 1461214327
Category : Technology & Engineering
Languages : en
Pages : 230
Book Description
This book treats computational modeling of structures in which strong nonlinearities are present. It is therefore a work in mechanics and engineering, although the discussion centers on methods that are considered parts of applied mathematics. The task is to simulate numerically the behavior of a structure under various imposed excitations, forces, and displacements, and then to determine the resulting damage to the structure, and ultimately to optimize it so as to minimize the damage, subject to various constraints. The method used is iterative: at each stage an approximation to the displacements, strains, and stresses throughout the structure is computated and over all times in the interval of interest. This method leads to a general approach for understanding structural models and the necessary approximations.
Computational Geometry for Ships
Author: H. Nowacki
Publisher: World Scientific
ISBN: 9789810233532
Category : Technology & Engineering
Languages : en
Pages : 220
Book Description
This book offers an advanced course on ?Computational Geometry for Ships?. It takes into account the recent rapid progress in this field by adapting modern computational methodology to ship geometric applications. Preliminary curve and surface techniques are included to educate engineers in the use of mathematical methods to assist in CAD and other design areas. In addition, there is a comprehensive study of interpolation and approximation techniques, which is reinforced by direct application to ship curve design, ship curve fairing techniques and other related disciplines. The design, evaluation and production of ship surface geometries are further demonstrated by including current and evolving CAD modelling systems.
Publisher: World Scientific
ISBN: 9789810233532
Category : Technology & Engineering
Languages : en
Pages : 220
Book Description
This book offers an advanced course on ?Computational Geometry for Ships?. It takes into account the recent rapid progress in this field by adapting modern computational methodology to ship geometric applications. Preliminary curve and surface techniques are included to educate engineers in the use of mathematical methods to assist in CAD and other design areas. In addition, there is a comprehensive study of interpolation and approximation techniques, which is reinforced by direct application to ship curve design, ship curve fairing techniques and other related disciplines. The design, evaluation and production of ship surface geometries are further demonstrated by including current and evolving CAD modelling systems.