Modeling and Design of Resonators for Electron Paramagnetic Resonance Imaging and Ultra High Field Magnetic Resonance Imaging

Modeling and Design of Resonators for Electron Paramagnetic Resonance Imaging and Ultra High Field Magnetic Resonance Imaging PDF Author: Anca Irina Stefan
Publisher:
ISBN:
Category : Cavity resonators
Languages : en
Pages : 120

Get Book Here

Book Description
Abstract: The purpose of this work was to use computer-aided design methods to analyze resonant cavities for electron paramagnetic resonance (EPR) and magnetic resonance (MR) imaging. As a result of this analysis, a new design and modifications to existing ones were proposed. The behavior of a L-band transverse electric reentrant resonator (TERR) for in-vivo EPR spectroscopy and imaging was analyzed. The influence of various geometrical parameters on the B1 field distribution was investigated. The optimal size of a sample that can be imaged with this type of resonator was determined, as well as the dependence of the quality factor on the sample size and geometry. Some of the numerical results were compared with experimental data. Finally, a design for a 300 MHz TERR was proposed. In the second part of this work, numerical studies using a model of a 16-strut transverse electromagnetic (TEM) resonator for MR imaging were performed. Simulations were performed either with a saline-filled spherical phantom or with a 4-mm resolution head model. The purpose was to investigate ways to improve the B1 homogeneity, obtain localized imaging, and explore the potential use of the first mode of the TEM structure. Models of TEM structures with reduced number of struts to allow for better patient access were designed. The effect of partially filling the TEM resonator with high dielectric constant material on the field homogeneity was analyzed.

Modeling and Design of Resonators for Electron Paramagnetic Resonance Imaging and Ultra High Field Magnetic Resonance Imaging

Modeling and Design of Resonators for Electron Paramagnetic Resonance Imaging and Ultra High Field Magnetic Resonance Imaging PDF Author: Anca Irina Stefan
Publisher:
ISBN:
Category : Cavity resonators
Languages : en
Pages : 120

Get Book Here

Book Description
Abstract: The purpose of this work was to use computer-aided design methods to analyze resonant cavities for electron paramagnetic resonance (EPR) and magnetic resonance (MR) imaging. As a result of this analysis, a new design and modifications to existing ones were proposed. The behavior of a L-band transverse electric reentrant resonator (TERR) for in-vivo EPR spectroscopy and imaging was analyzed. The influence of various geometrical parameters on the B1 field distribution was investigated. The optimal size of a sample that can be imaged with this type of resonator was determined, as well as the dependence of the quality factor on the sample size and geometry. Some of the numerical results were compared with experimental data. Finally, a design for a 300 MHz TERR was proposed. In the second part of this work, numerical studies using a model of a 16-strut transverse electromagnetic (TEM) resonator for MR imaging were performed. Simulations were performed either with a saline-filled spherical phantom or with a 4-mm resolution head model. The purpose was to investigate ways to improve the B1 homogeneity, obtain localized imaging, and explore the potential use of the first mode of the TEM structure. Models of TEM structures with reduced number of struts to allow for better patient access were designed. The effect of partially filling the TEM resonator with high dielectric constant material on the field homogeneity was analyzed.

Multifrequency Electron Paramagnetic Resonance

Multifrequency Electron Paramagnetic Resonance PDF Author: Sushil K. Misra
Publisher: John Wiley & Sons
ISBN: 3527672451
Category : Science
Languages : en
Pages : 398

Get Book Here

Book Description
This handbook is aimed to deliver an up-to-date account of some of the recently developed experimental and theoretical methods in EPR, as well as a complete up-to-date listing of the experimentally determined values of multifrequency transition-ion spin Hamiltonian parameters by Sushil Misra, reported in the past 20 years, extending such a listing published by him in the Handbook on Electron Spin Resonance, volume 2. This extensive data tabulation makes up roughly 60% of the book`s content. It is complemented by the first full compilation of hyperfine splittings and g-factors for aminoxyl (nitroxide) radicals since 197 by Larry Berliner, a world expert on spin labeling, helping to identify and interpret substances and processes by means of EPR techniques. The book also includes coverage of the recently developed experimental technique of rapid-scan EPR by Sandra Eaton and Gareth Eaton, and a thorough review of computational modeling in EPR by Stefan Stoll, author of Easy Spin.

Novel Radio Frequency Resonators for in Vivo Magnetic Resonance Imaging and Spectroscopy at Very High Magnetic Fields

Novel Radio Frequency Resonators for in Vivo Magnetic Resonance Imaging and Spectroscopy at Very High Magnetic Fields PDF Author: Xiaoliang Zhang
Publisher:
ISBN:
Category : Magnetic resonance imaging
Languages : en
Pages : 560

Get Book Here

Book Description


Measuring Oxidants and Oxidative Stress in Biological Systems

Measuring Oxidants and Oxidative Stress in Biological Systems PDF Author: Lawrence J. Berliner
Publisher: Springer Nature
ISBN: 303047318X
Category : Science
Languages : en
Pages : 237

Get Book Here

Book Description
This book describes the methods of analysis and determination of oxidants and oxidative stress in biological systems. Reviews and protocols on select methods of analysis of ROS, RNS, oxygen, redox status, and oxidative stress in biological systems are described in detail. It is an essential resource for both novices and experts in the field of oxidant and oxidative stress biology.

Dissertation Abstracts International

Dissertation Abstracts International PDF Author:
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 994

Get Book Here

Book Description


Magnetic Resonance Microscopy

Magnetic Resonance Microscopy PDF Author: Sabina Haber-Pohlmeier
Publisher: John Wiley & Sons
ISBN: 3527827250
Category : Science
Languages : en
Pages : 468

Get Book Here

Book Description
Magnetic Resonance Microscopy Explore the interdisciplinary applications of magnetic resonance microscopy in this one-of-a-kind resource In Magnetic Resonance Microscopy: Instrumentation and Applications in Engineering, Life Science and Energy Research, a team of distinguished researchers delivers a comprehensive exploration of the use of magnetic resonance microscopy (MRM) and similar techniques in an interdisciplinary milieux. Opening with a section on hardware and methodology, the book moves on to consider developments in the field of mobile nuclear magnetic resonance. Essential processes, including filtration, multi-phase flow and transport, and a wide range of systems – from biomarkers via single cells to plants and biofilms – are discussed next. After a fulsome treatment of MRM in the field of energy research, the editors conclude the book with a chapter extoling the virtues of a holistic treatment of theory and application in MRM. Magnetic Resonance Microscopy: Instrumentation and Applications in Engineering, Life Science and Energy Research also includes: A thorough introduction to recent developments in magnetic resonance microscopy hardware and methods, including ceramic coils for MR microscopy Comprehensive explorations of applications in chemical engineering, including ultra-fast MR techniques to image multi-phase flow in pipes and reactors Practical discussions of applications in the life sciences, including MRI of single cells labelled with super paramagnetic iron oxide nanoparticles In-depth examinations of new applications in energy research, including spectroscopic imaging of devices for electrochemical storage Perfect for practicing scientists from all fields, Magnetic Resonance Microscopy: Instrumentation and Applications in Engineering, Life Science and Energy Research is an ideal resource for anyone seeking a one-stop guide to magnetic resonance microscopy for engineers, life scientists, and energy researchers.

Orthogonalized-design Resonator Coils for Magnetic Resonance Imaging

Orthogonalized-design Resonator Coils for Magnetic Resonance Imaging PDF Author: Paul R. Moran
Publisher:
ISBN:
Category : Magnetic resonance imaging
Languages : en
Pages : 50

Get Book Here

Book Description


Improving Magnetic Resonance Imaging with High Temperature Superconductors

Improving Magnetic Resonance Imaging with High Temperature Superconductors PDF Author: John Gerald Van Heteren
Publisher:
ISBN:
Category :
Languages : en
Pages : 286

Get Book Here

Book Description


Microwave/RF Applicators and Probes for Material Heating, Sensing, and Plasma Generation

Microwave/RF Applicators and Probes for Material Heating, Sensing, and Plasma Generation PDF Author: Mehrdad Mehdizadeh
Publisher: William Andrew
ISBN: 0815519869
Category : Technology & Engineering
Languages : en
Pages : 402

Get Book Here

Book Description
Interactions of electromagnetic fields with materials at high frequencies have given rise to a vast array of practical applications in industry, science, medicine, and consumer markets. Applicators or probes, which are the front end of these systems, provide the field that interacts with the material. This book takes an integrated approach to the area of high frequency applicators and probes for material interactions, providing a toolkit for those who design these devices. Particular attention is given to real-world applications and the latest developments in the area. Mathematical methods are provided as design tools, and are often simplified via curve-fitting techniques that are particularly usable by handheld calculators. Useful equations and numerically solved examples, using situations encountered in practice, are supplied. Above all, this volume is a comprehensive and useful reference where the reader can find design rules and principles of high frequency applicators and probes for material processing and sensing applications. Electronic and electrical R&D engineers, physicists, university professors and students will all find this book a valuable reference. Mehrdad Mehdizadeh is with the DuPont Company, Engineering Research & Technology Division in Wilmington, Delaware. His areas of expertise include high frequency hardware and electromagnetic methods of processing, sensing, and characterization of materials. His work and innovation in industrial, scientific, and medical applications of radio frequency and microwaves has resulted in 19 US patents and a number of publications. He earned his Ph.D. and M.S. from Marquette University (1983, 1980), and a B.S. from Sharif University of Technology (1977), all in electrical engineering. Dr. Mehdizadeh is a Senior Member of the Institute of Electrical and Electronic Engineers (IEEE ), Sigma Xi (Scientific Research Society), the International Microwave Power Institute (IMPI ), and a voting member of IEEE Standard Association. - Books in this area are usually theoretical; this book provides practical information for those who actually intend to design a system - Features real world and numerically solved examples, and curve-fitted simple equations to replace complex equations provided in typical texts - Author is a voting member of IEEE Standards Association

Quantitative EPR

Quantitative EPR PDF Author: Gareth R. Eaton
Publisher: Springer Science & Business Media
ISBN: 3211929487
Category : Science
Languages : en
Pages : 192

Get Book Here

Book Description
There is a growing need in both industrial and academic research to obtain accurate quantitative results from continuous wave (CW) electron paramagnetic resonance (EPR) experiments. This book describes various sample-related, instrument-related and software-related aspects of obtaining quantitative results from EPR expe- ments. Some speci?c items to be discussed include: selection of a reference standard, resonator considerations (Q, B ,B ), power saturation, sample position- 1 m ing, and ?nally, the blending of all the factors together to provide a calculation model for obtaining an accurate spin concentration of a sample. This book might, at ?rst glance, appear to be a step back from some of the more advanced pulsed methods discussed in recent EPR texts, but actually quantitative “routine CW EPR” is a challenging technique, and requires a thorough understa- ing of the spectrometer and the spin system. Quantitation of CW EPR can be subdivided into two main categories: (1) intensity and (2) magnetic ?eld/mic- wave frequency measurement. Intensity is important for spin counting. Both re- tive intensity quantitation of EPR samples and their absolute spin concentration of samples are often of interest. This information is important for kinetics, mechanism elucidation, and commercial applications where EPR serves as a detection system for free radicals produced in an industrial process. It is also important for the study of magnetic properties. Magnetic ?eld/microwave frequency is important for g and nuclear hyper?ne coupling measurements that re?ect the electronic structure of the radicals or metal ions.