Author: Jeffrey Marc Lee
Publisher: American Mathematical Soc.
ISBN: 0821848151
Category : Mathematics
Languages : en
Pages : 690
Book Description
Differential geometry began as the study of curves and surfaces using the methods of calculus. This book offers a graduate-level introduction to the tools and structures of modern differential geometry. It includes the topics usually found in a course on differentiable manifolds, such as vector bundles, tensors, and de Rham cohomology.
Manifolds and Differential Geometry
Author: Jeffrey Marc Lee
Publisher: American Mathematical Soc.
ISBN: 0821848151
Category : Mathematics
Languages : en
Pages : 690
Book Description
Differential geometry began as the study of curves and surfaces using the methods of calculus. This book offers a graduate-level introduction to the tools and structures of modern differential geometry. It includes the topics usually found in a course on differentiable manifolds, such as vector bundles, tensors, and de Rham cohomology.
Publisher: American Mathematical Soc.
ISBN: 0821848151
Category : Mathematics
Languages : en
Pages : 690
Book Description
Differential geometry began as the study of curves and surfaces using the methods of calculus. This book offers a graduate-level introduction to the tools and structures of modern differential geometry. It includes the topics usually found in a course on differentiable manifolds, such as vector bundles, tensors, and de Rham cohomology.
Geometry of Manifolds
Author:
Publisher: Academic Press
ISBN: 0080873278
Category : Mathematics
Languages : en
Pages : 287
Book Description
Geometry of Manifolds
Publisher: Academic Press
ISBN: 0080873278
Category : Mathematics
Languages : en
Pages : 287
Book Description
Geometry of Manifolds
Geometry and Topology of Manifolds: Surfaces and Beyond
Author: Vicente Muñoz
Publisher: American Mathematical Soc.
ISBN: 1470461323
Category : Education
Languages : en
Pages : 420
Book Description
This book represents a novel approach to differential topology. Its main focus is to give a comprehensive introduction to the classification of manifolds, with special attention paid to the case of surfaces, for which the book provides a complete classification from many points of view: topological, smooth, constant curvature, complex, and conformal. Each chapter briefly revisits basic results usually known to graduate students from an alternative perspective, focusing on surfaces. We provide full proofs of some remarkable results that sometimes are missed in basic courses (e.g., the construction of triangulations on surfaces, the classification of surfaces, the Gauss-Bonnet theorem, the degree-genus formula for complex plane curves, the existence of constant curvature metrics on conformal surfaces), and we give hints to questions about higher dimensional manifolds. Many examples and remarks are scattered through the book. Each chapter ends with an exhaustive collection of problems and a list of topics for further study. The book is primarily addressed to graduate students who did take standard introductory courses on algebraic topology, differential and Riemannian geometry, or algebraic geometry, but have not seen their deep interconnections, which permeate a modern approach to geometry and topology of manifolds.
Publisher: American Mathematical Soc.
ISBN: 1470461323
Category : Education
Languages : en
Pages : 420
Book Description
This book represents a novel approach to differential topology. Its main focus is to give a comprehensive introduction to the classification of manifolds, with special attention paid to the case of surfaces, for which the book provides a complete classification from many points of view: topological, smooth, constant curvature, complex, and conformal. Each chapter briefly revisits basic results usually known to graduate students from an alternative perspective, focusing on surfaces. We provide full proofs of some remarkable results that sometimes are missed in basic courses (e.g., the construction of triangulations on surfaces, the classification of surfaces, the Gauss-Bonnet theorem, the degree-genus formula for complex plane curves, the existence of constant curvature metrics on conformal surfaces), and we give hints to questions about higher dimensional manifolds. Many examples and remarks are scattered through the book. Each chapter ends with an exhaustive collection of problems and a list of topics for further study. The book is primarily addressed to graduate students who did take standard introductory courses on algebraic topology, differential and Riemannian geometry, or algebraic geometry, but have not seen their deep interconnections, which permeate a modern approach to geometry and topology of manifolds.
Introduction to Topological Manifolds
Author: John M. Lee
Publisher: Springer Science & Business Media
ISBN: 038722727X
Category : Mathematics
Languages : en
Pages : 395
Book Description
Manifolds play an important role in topology, geometry, complex analysis, algebra, and classical mechanics. Learning manifolds differs from most other introductory mathematics in that the subject matter is often completely unfamiliar. This introduction guides readers by explaining the roles manifolds play in diverse branches of mathematics and physics. The book begins with the basics of general topology and gently moves to manifolds, the fundamental group, and covering spaces.
Publisher: Springer Science & Business Media
ISBN: 038722727X
Category : Mathematics
Languages : en
Pages : 395
Book Description
Manifolds play an important role in topology, geometry, complex analysis, algebra, and classical mechanics. Learning manifolds differs from most other introductory mathematics in that the subject matter is often completely unfamiliar. This introduction guides readers by explaining the roles manifolds play in diverse branches of mathematics and physics. The book begins with the basics of general topology and gently moves to manifolds, the fundamental group, and covering spaces.
An Introduction to Manifolds
Author: Loring W. Tu
Publisher: Springer Science & Business Media
ISBN: 1441974008
Category : Mathematics
Languages : en
Pages : 426
Book Description
Manifolds, the higher-dimensional analogs of smooth curves and surfaces, are fundamental objects in modern mathematics. Combining aspects of algebra, topology, and analysis, manifolds have also been applied to classical mechanics, general relativity, and quantum field theory. In this streamlined introduction to the subject, the theory of manifolds is presented with the aim of helping the reader achieve a rapid mastery of the essential topics. By the end of the book the reader should be able to compute, at least for simple spaces, one of the most basic topological invariants of a manifold, its de Rham cohomology. Along the way, the reader acquires the knowledge and skills necessary for further study of geometry and topology. The requisite point-set topology is included in an appendix of twenty pages; other appendices review facts from real analysis and linear algebra. Hints and solutions are provided to many of the exercises and problems. This work may be used as the text for a one-semester graduate or advanced undergraduate course, as well as by students engaged in self-study. Requiring only minimal undergraduate prerequisites, 'Introduction to Manifolds' is also an excellent foundation for Springer's GTM 82, 'Differential Forms in Algebraic Topology'.
Publisher: Springer Science & Business Media
ISBN: 1441974008
Category : Mathematics
Languages : en
Pages : 426
Book Description
Manifolds, the higher-dimensional analogs of smooth curves and surfaces, are fundamental objects in modern mathematics. Combining aspects of algebra, topology, and analysis, manifolds have also been applied to classical mechanics, general relativity, and quantum field theory. In this streamlined introduction to the subject, the theory of manifolds is presented with the aim of helping the reader achieve a rapid mastery of the essential topics. By the end of the book the reader should be able to compute, at least for simple spaces, one of the most basic topological invariants of a manifold, its de Rham cohomology. Along the way, the reader acquires the knowledge and skills necessary for further study of geometry and topology. The requisite point-set topology is included in an appendix of twenty pages; other appendices review facts from real analysis and linear algebra. Hints and solutions are provided to many of the exercises and problems. This work may be used as the text for a one-semester graduate or advanced undergraduate course, as well as by students engaged in self-study. Requiring only minimal undergraduate prerequisites, 'Introduction to Manifolds' is also an excellent foundation for Springer's GTM 82, 'Differential Forms in Algebraic Topology'.
Geometry of Manifolds
Author: Richard L. Bishop
Publisher: American Mathematical Soc.
ISBN: 0821829238
Category : Mathematics
Languages : en
Pages : 290
Book Description
From the Preface of the First Edition: ``Our purpose in writing this book is to put material which we found stimulating and interesting as graduate students into form. It is intended for individual study and for use as a text for graduate level courses such as the one from which this material stems, given by Professor W. Ambrose at MIT in 1958-1959. Previously the material had been organized in roughly the same form by him and Professor I. M. Singer, and they in turn drew upon thework of Ehresmann, Chern, and E. Cartan. Our contributions have been primarily to fill out the material with details, asides and problems, and to alter notation slightly. ``We believe that this subject matter, besides being an interesting area for specialization, lends itself especially to a synthesisof several branches of mathematics, and thus should be studied by a wide spectrum of graduate students so as to break away from narrow specialization and see how their own fields are related and applied in other fields. We feel that at least part of this subject should be of interest not only to those working in geometry, but also to those in analysis, topology, algebra, and even probability and astronomy. In order that this book be meaningful, the reader's background should include realvariable theory, linear algebra, and point set topology.'' This volume is a reprint with few corrections of the original work published in 1964. Starting with the notion of differential manifolds, the first six chapters lay a foundation for the study of Riemannian manifolds through specializing the theoryof connections on principle bundles and affine connections. The geometry of Riemannian manifolds is emphasized, as opposed to global analysis, so that the theorems of Hopf-Rinow, Hadamard-Cartan, and Cartan's local isometry theorem are included, but no elliptic operator theory. Isometric immersions are treated elegantly and from a global viewpoint. In the final chapter are the more complicated estimates on which much of the research in Riemannian geometry is based: the Morse index theorem,Synge's theorems on closed geodesics, Rauch's comparison theorem, and the original proof of the Bishop volume-comparison theorem (with Myer's Theorem as a corollary). The first edition of this book was the origin of a modern treatment of global Riemannian geometry, using the carefully conceived notationthat has withstood the test of time. The primary source material for the book were the papers and course notes of brilliant geometers, including E. Cartan, C. Ehresmann, I. M. Singer, and W. Ambrose. It is tightly organized, uniformly very precise, and amazingly comprehensive for its length.
Publisher: American Mathematical Soc.
ISBN: 0821829238
Category : Mathematics
Languages : en
Pages : 290
Book Description
From the Preface of the First Edition: ``Our purpose in writing this book is to put material which we found stimulating and interesting as graduate students into form. It is intended for individual study and for use as a text for graduate level courses such as the one from which this material stems, given by Professor W. Ambrose at MIT in 1958-1959. Previously the material had been organized in roughly the same form by him and Professor I. M. Singer, and they in turn drew upon thework of Ehresmann, Chern, and E. Cartan. Our contributions have been primarily to fill out the material with details, asides and problems, and to alter notation slightly. ``We believe that this subject matter, besides being an interesting area for specialization, lends itself especially to a synthesisof several branches of mathematics, and thus should be studied by a wide spectrum of graduate students so as to break away from narrow specialization and see how their own fields are related and applied in other fields. We feel that at least part of this subject should be of interest not only to those working in geometry, but also to those in analysis, topology, algebra, and even probability and astronomy. In order that this book be meaningful, the reader's background should include realvariable theory, linear algebra, and point set topology.'' This volume is a reprint with few corrections of the original work published in 1964. Starting with the notion of differential manifolds, the first six chapters lay a foundation for the study of Riemannian manifolds through specializing the theoryof connections on principle bundles and affine connections. The geometry of Riemannian manifolds is emphasized, as opposed to global analysis, so that the theorems of Hopf-Rinow, Hadamard-Cartan, and Cartan's local isometry theorem are included, but no elliptic operator theory. Isometric immersions are treated elegantly and from a global viewpoint. In the final chapter are the more complicated estimates on which much of the research in Riemannian geometry is based: the Morse index theorem,Synge's theorems on closed geodesics, Rauch's comparison theorem, and the original proof of the Bishop volume-comparison theorem (with Myer's Theorem as a corollary). The first edition of this book was the origin of a modern treatment of global Riemannian geometry, using the carefully conceived notationthat has withstood the test of time. The primary source material for the book were the papers and course notes of brilliant geometers, including E. Cartan, C. Ehresmann, I. M. Singer, and W. Ambrose. It is tightly organized, uniformly very precise, and amazingly comprehensive for its length.
Differential Geometry
Author: Loring W. Tu
Publisher: Springer
ISBN: 3319550845
Category : Mathematics
Languages : en
Pages : 358
Book Description
This text presents a graduate-level introduction to differential geometry for mathematics and physics students. The exposition follows the historical development of the concepts of connection and curvature with the goal of explaining the Chern–Weil theory of characteristic classes on a principal bundle. Along the way we encounter some of the high points in the history of differential geometry, for example, Gauss' Theorema Egregium and the Gauss–Bonnet theorem. Exercises throughout the book test the reader’s understanding of the material and sometimes illustrate extensions of the theory. Initially, the prerequisites for the reader include a passing familiarity with manifolds. After the first chapter, it becomes necessary to understand and manipulate differential forms. A knowledge of de Rham cohomology is required for the last third of the text. Prerequisite material is contained in author's text An Introduction to Manifolds, and can be learned in one semester. For the benefit of the reader and to establish common notations, Appendix A recalls the basics of manifold theory. Additionally, in an attempt to make the exposition more self-contained, sections on algebraic constructions such as the tensor product and the exterior power are included. Differential geometry, as its name implies, is the study of geometry using differential calculus. It dates back to Newton and Leibniz in the seventeenth century, but it was not until the nineteenth century, with the work of Gauss on surfaces and Riemann on the curvature tensor, that differential geometry flourished and its modern foundation was laid. Over the past one hundred years, differential geometry has proven indispensable to an understanding of the physical world, in Einstein's general theory of relativity, in the theory of gravitation, in gauge theory, and now in string theory. Differential geometry is also useful in topology, several complex variables, algebraic geometry, complex manifolds, and dynamical systems, among other fields. The field has even found applications to group theory as in Gromov's work and to probability theory as in Diaconis's work. It is not too far-fetched to argue that differential geometry should be in every mathematician's arsenal.
Publisher: Springer
ISBN: 3319550845
Category : Mathematics
Languages : en
Pages : 358
Book Description
This text presents a graduate-level introduction to differential geometry for mathematics and physics students. The exposition follows the historical development of the concepts of connection and curvature with the goal of explaining the Chern–Weil theory of characteristic classes on a principal bundle. Along the way we encounter some of the high points in the history of differential geometry, for example, Gauss' Theorema Egregium and the Gauss–Bonnet theorem. Exercises throughout the book test the reader’s understanding of the material and sometimes illustrate extensions of the theory. Initially, the prerequisites for the reader include a passing familiarity with manifolds. After the first chapter, it becomes necessary to understand and manipulate differential forms. A knowledge of de Rham cohomology is required for the last third of the text. Prerequisite material is contained in author's text An Introduction to Manifolds, and can be learned in one semester. For the benefit of the reader and to establish common notations, Appendix A recalls the basics of manifold theory. Additionally, in an attempt to make the exposition more self-contained, sections on algebraic constructions such as the tensor product and the exterior power are included. Differential geometry, as its name implies, is the study of geometry using differential calculus. It dates back to Newton and Leibniz in the seventeenth century, but it was not until the nineteenth century, with the work of Gauss on surfaces and Riemann on the curvature tensor, that differential geometry flourished and its modern foundation was laid. Over the past one hundred years, differential geometry has proven indispensable to an understanding of the physical world, in Einstein's general theory of relativity, in the theory of gravitation, in gauge theory, and now in string theory. Differential geometry is also useful in topology, several complex variables, algebraic geometry, complex manifolds, and dynamical systems, among other fields. The field has even found applications to group theory as in Gromov's work and to probability theory as in Diaconis's work. It is not too far-fetched to argue that differential geometry should be in every mathematician's arsenal.
Manifolds, Sheaves, and Cohomology
Author: Torsten Wedhorn
Publisher: Springer
ISBN: 3658106336
Category : Mathematics
Languages : en
Pages : 366
Book Description
This book explains techniques that are essential in almost all branches of modern geometry such as algebraic geometry, complex geometry, or non-archimedian geometry. It uses the most accessible case, real and complex manifolds, as a model. The author especially emphasizes the difference between local and global questions. Cohomology theory of sheaves is introduced and its usage is illustrated by many examples.
Publisher: Springer
ISBN: 3658106336
Category : Mathematics
Languages : en
Pages : 366
Book Description
This book explains techniques that are essential in almost all branches of modern geometry such as algebraic geometry, complex geometry, or non-archimedian geometry. It uses the most accessible case, real and complex manifolds, as a model. The author especially emphasizes the difference between local and global questions. Cohomology theory of sheaves is introduced and its usage is illustrated by many examples.
Foliations and the Geometry of 3-Manifolds
Author: Danny Calegari
Publisher: Oxford University Press on Demand
ISBN: 0198570082
Category : Mathematics
Languages : en
Pages : 378
Book Description
This unique reference, aimed at research topologists, gives an exposition of the 'pseudo-Anosov' theory of foliations of 3-manifolds. This theory generalizes Thurston's theory of surface automorphisms and reveals an intimate connection between dynamics, geometry and topology in 3 dimensions. Significant themes returned to throughout the text include the importance of geometry, especially the hyperbolic geometry of surfaces, the importance of monotonicity, especially in1-dimensional and co-dimensional dynamics, and combinatorial approximation, using finite combinatorical objects such as train-tracks, branched surfaces and hierarchies to carry more complicated continuous objects.
Publisher: Oxford University Press on Demand
ISBN: 0198570082
Category : Mathematics
Languages : en
Pages : 378
Book Description
This unique reference, aimed at research topologists, gives an exposition of the 'pseudo-Anosov' theory of foliations of 3-manifolds. This theory generalizes Thurston's theory of surface automorphisms and reveals an intimate connection between dynamics, geometry and topology in 3 dimensions. Significant themes returned to throughout the text include the importance of geometry, especially the hyperbolic geometry of surfaces, the importance of monotonicity, especially in1-dimensional and co-dimensional dynamics, and combinatorial approximation, using finite combinatorical objects such as train-tracks, branched surfaces and hierarchies to carry more complicated continuous objects.
Contact Manifolds in Riemannian Geometry
Author: D. E. Blair
Publisher: Springer
ISBN: 3540381546
Category : Mathematics
Languages : en
Pages : 153
Book Description
Publisher: Springer
ISBN: 3540381546
Category : Mathematics
Languages : en
Pages : 153
Book Description