Low-Cost Composite Materials for Polymer Electrolyte Fuel Cell Bipolar Plates

Low-Cost Composite Materials for Polymer Electrolyte Fuel Cell Bipolar Plates PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 4

Get Book Here

Book Description
Polymer electrolyte fuel cells (PEFCS) are under widespread development to produce electrical power for a variety of stationary and transportation applications. To date, the bipolar plate remains the most problematic and costly component of PEFC stacks (1). In addition to meeting cost constraints, bipolar plates must possess a host of other properties, the most important of which are listed in Table 1. The most commonly used material for single cell testing is machined graphite, which is expensive and costly to machine. The brittle nature of graphite also precludes the use of thin components for reducing stack size and weight, which is particularly important for transportation applications. Other stack designs consider the use of metal hardware such as stainless steel (2,3). But a number of disadvantages are associated with stainless steel, including high density, high cost of machining, and possible corrosion in the fuel cell environment. In light of these difficulties, much of the recent work on fuel cell bipolar plate materials has concentrated on graphite/polymer composites (4--8). Composite materials offer the potential advantages of lower cost, lower weight, and greater ease of manufacture than traditional graphite and metal plates. For instance, flow fields can be molded directly into these composites, thereby eliminating the costly and difficult machining step required for graphite or metal hardware.

Low-Cost Composite Materials for Polymer Electrolyte Fuel Cell Bipolar Plates

Low-Cost Composite Materials for Polymer Electrolyte Fuel Cell Bipolar Plates PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 4

Get Book Here

Book Description
Polymer electrolyte fuel cells (PEFCS) are under widespread development to produce electrical power for a variety of stationary and transportation applications. To date, the bipolar plate remains the most problematic and costly component of PEFC stacks (1). In addition to meeting cost constraints, bipolar plates must possess a host of other properties, the most important of which are listed in Table 1. The most commonly used material for single cell testing is machined graphite, which is expensive and costly to machine. The brittle nature of graphite also precludes the use of thin components for reducing stack size and weight, which is particularly important for transportation applications. Other stack designs consider the use of metal hardware such as stainless steel (2,3). But a number of disadvantages are associated with stainless steel, including high density, high cost of machining, and possible corrosion in the fuel cell environment. In light of these difficulties, much of the recent work on fuel cell bipolar plate materials has concentrated on graphite/polymer composites (4--8). Composite materials offer the potential advantages of lower cost, lower weight, and greater ease of manufacture than traditional graphite and metal plates. For instance, flow fields can be molded directly into these composites, thereby eliminating the costly and difficult machining step required for graphite or metal hardware.

Thermoplastic Composites for Polymer Electrolyte Membrane Fuel Cell Bipolar Plates

Thermoplastic Composites for Polymer Electrolyte Membrane Fuel Cell Bipolar Plates PDF Author: Taylor Jacob Mali
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Polymer Membranes for Fuel Cells

Polymer Membranes for Fuel Cells PDF Author: Javaid Zaidi
Publisher: Springer Science & Business Media
ISBN: 0387735321
Category : Science
Languages : en
Pages : 439

Get Book Here

Book Description
From the late-1960’s, perfluorosulfonic acid (PFSAs) ionomers have dominated the PEM fuel cell industry as the membrane material of choice. The “gold standard’ amongst the many variations that exist today has been, and to a great extent still is, DuPont’s Nafion® family of materials. However, there is significant concern in the industry that these materials will not meet the cost, performance, and durability requirementsnecessary to drive commercialization in key market segments – es- cially automotive. Indeed, Honda has already put fuel cell vehicles in the hands of real end users that have home-grown fuel cell stack technology incorporating hydrocarbon-based ionomers. “Polymer Membranes in Fuel Cells” takes an in-depth look at the new chem- tries and membrane technologies that have been developed over the years to address the concerns associated with the materials currently in use. Unlike the PFSAs, which were originally developed for the chlor-alkali industry, the more recent hydrocarbon and composite materials have been developed to meet the specific requirements of PEM Fuel Cells. Having said this, most of the work has been based on derivatives of known polymers, such as poly(ether-ether ketones), to ensure that the critical requirement of low cost is met. More aggressive operational requi- ments have also spurred the development on new materials; for example, the need for operation at higher temperature under low relative humidity has spawned the creation of a plethora of new polymers with potential application in PEM Fuel Cells.

Proton Exchange Membrane Fuel Cells

Proton Exchange Membrane Fuel Cells PDF Author: David P. Wilkinson
Publisher: CRC Press
ISBN: 1439806667
Category : Science
Languages : en
Pages : 462

Get Book Here

Book Description
A Detailed, Up-to-Date Treatment of Key Developments in PEMFC MaterialsThe potential to revolutionize the way we power our worldBecause of its lower temperature and special polymer electrolyte membrane, the proton exchange membrane fuel cell (PEMFC) is well-suited for transportation, portable, and micro fuel cell applications. But the performance o

Organic-Inorganic Composite Polymer Electrolyte Membranes

Organic-Inorganic Composite Polymer Electrolyte Membranes PDF Author: Dr Inamuddin
Publisher: Springer
ISBN: 3319527398
Category : Technology & Engineering
Languages : en
Pages : 474

Get Book Here

Book Description
This volume explores the latest developments in the area of polymer electrolyte membranes (PEMs) used for high-temperature fuel cells. Featuring contributions from an international array of researchers, it presents a unified viewpoint on the operating principles of fuel cells, various methodologies used for the fabrication of PEMs, and issues related to the chemical and mechanical stabilities of the membranes. Special attention is given to the fabrication of electrospun nanocomposite membranes. The editors have consciously placed an emphasis on developments in the area of fast-growing and promising PEM materials obtained via hygroscopic inorganic fillers, solid proton conductors, heterocyclic solvents, ionic liquids, anhydrous H3PO4 blends, and heteropolyacids. This book is intended for fuel cell researchers and students who are interested in a deeper understanding of the organic–inorganic membranes used in fuel cells, membrane fabrication methodologies, properties and clean energy applications.

Polymer Electrolyte Fuel Cell Durability

Polymer Electrolyte Fuel Cell Durability PDF Author: Felix N. Büchi
Publisher: Springer Science & Business Media
ISBN: 038785536X
Category : Science
Languages : en
Pages : 489

Get Book Here

Book Description
This book covers a significant number of R&D projects, performed mostly after 2000, devoted to the understanding and prevention of performance degradation processes in polymer electrolyte fuel cells (PEFCs). The extent and severity of performance degradation processes in PEFCs were recognized rather gradually. Indeed, the recognition overlapped with a significant number of industrial dem- strations of fuel cell powered vehicles, which would suggest a degree of technology maturity beyond the resaolution of fundamental failure mechanisms. An intriguing question, therefore, is why has there been this apparent delay in addressing fun- mental performance stability requirements. The apparent answer is that testing of the power system under fully realistic operation conditions was one prerequisite for revealing the nature and extent of some key modes of PEFC stack failure. Such modes of failure were not exposed to a similar degree, or not at all, in earlier tests of PEFC stacks which were not performed under fully relevant conditions, parti- larly such tests which did not include multiple on–off and/or high power–low power cycles typical for transportation and mobile power applications of PEFCs. Long-term testing of PEFCs reported in the early 1990s by both Los Alamos National Laboratory and Ballard Power was performed under conditions of c- stant cell voltage, typically near the maximum power point of the PEFC.

Development of Electrically Conductive Thermoplastic Composites for Bipolar Plate Application in Polymer Electrolyte Membrane Fuel Cell

Development of Electrically Conductive Thermoplastic Composites for Bipolar Plate Application in Polymer Electrolyte Membrane Fuel Cell PDF Author: Rungsima Yeetsorn
Publisher:
ISBN:
Category :
Languages : en
Pages : 248

Get Book Here

Book Description
Polymer electrolyte membrane fuel cells (PEMFCs) have the potential to play a major role as energy generators for transportation and portable applications. One of the current barriers to their commercialization is the cost of the components and manufacturing, specifically the bipolar plates. One approach to preparing PEMFCs for commercialization is to develop new bipolar plate materials, related to mass production of fuel cells. Thermoplastic/carbon filler composites with low filler loading have a major advantage in that they can be produced by a conventional low-cost injection molding technique. In addition, the materials used are inexpensive, easy to shape, and lightweight. An optimal bipolar plate must possess high surface and bulk electronic conductivity, sufficient mechanical integrity, low permeability, and corrosion resistance. However, it is difficult to achieve high electrical conductivity from a low-cost thermoplastic composite with low conductive filler loading. Concerns over electrical conductivity improvement and the injection processability of composites have brought forth the idea of producing a polypropylene/three-carbon-filler composite for bipolar plate application. The thesis addresses the development of synergistic effects of filler combinations, investigating composite conductive materials and using composite bipolar plate testing in PEMFCs. One significant effect of conductive network formation is the synergetic effects of different carbon filler sizes, shapes, and multiple filler ratios on the electrical conductivity of bipolar plate materials. A polypropylene resin combined with low-cost conductive fillers (graphite, conductive carbon black, and carbon fibers with 55 wt% of filler loading) compose the main composite for all investigations in this research. Numerous composite formulations, based on single-, two-, and three-filler systems, have been created to investigate the characteristics and synergistic effects of multiple fillers on composite conductivity. Electrical conductivity measurements corresponding to PEMFC performance and processing characteristics were investigated. Experimental work also involved other ex-situ testing for the physical requirements of commercial bipolar plates. All combinations of fillers were found to have a significant synergistic effect that increased the composite electrical conductivity. Carbon black was found to have the highest influence on the increase of electrical conductivity compared to the other fillers. The use of conjugated conducting polymers such as polypyrrole (PPy) to help the composite blends gain desirable conductivities was also studied. Electrical conductivity was significantly improved conductivity by enriching the conducting paths on the interfaces between fillers and the PP matrix with PPy. The conductive network was found to have a linkage of carbon fibers following the respective size distributions of fibers. The combination of Fortafil and Asbury carbon fiber mixture ameliorated the structure of conductive paths, especially in the through-plane direction. However, using small fibers such as carbon nanofibers did not significantly improve in electrical conductivity. The useful characteristics of an individual filler and filler supportive functions were combined to create a novel formula that significantly improved electrical conductivity. Other properties, such as mechanical and rheological ones, demonstrate the potential to use the composites in bipolar plate applications. This research contributes a direction for further improvement of marketable thermoplastic bipolar plate composite materials.

Materials for Fuel Cells

Materials for Fuel Cells PDF Author: M Gasik
Publisher: Elsevier
ISBN: 184569483X
Category : Technology & Engineering
Languages : en
Pages : 513

Get Book Here

Book Description
A fuel cell is an electrochemical device that converts the chemical energy of a reaction (between fuel and oxidant) directly into electricity. Given their efficiency and low emissions, fuel cells provide an important alternative to power produced from fossil fuels. A major challenge in their use is the need for better materials to make fuel cells cost-effective and more durable. This important book reviews developments in materials to fulfil the potential of fuel cells as a major power source. After introductory chapters on the key issues in fuel cell materials research, the book reviews the major types of fuel cell. These include alkaline fuel cells, polymer electrolyte fuel cells, direct methanol fuel cells, phosphoric acid fuel cells, molten carbonate fuel cells, solid oxide fuel cells and regenerative fuel cells. The book concludes with reviews of novel fuel cell materials, ways of analysing performance and issues affecting recyclability and life cycle assessment. With its distinguished editor and international team of contributors, Materials for fuel cells is a valuable reference for all those researching, manufacturing and using fuel cells in such areas as automotive engineering. Examines the key issues in fuel cell materials research Reviews the major types of fuel cells such as direct methanol and regenerative fuel cells Further chapters explore ways of analysing performance and issues affecting recyclability and life cycle assessment

Fuel Cell Science and Engineering, 2 Volume Set

Fuel Cell Science and Engineering, 2 Volume Set PDF Author: Detlef Stolten
Publisher: John Wiley & Sons
ISBN: 3527330127
Category : Science
Languages : en
Pages : 1298

Get Book Here

Book Description
Fuel cells are expected to play a major role in the future power supply that will transform to renewable, decentralized and fluctuating primary energies. At the same time the share of electric power will continually increase at the expense of thermal and mechanical energy not just in transportation, but also in households. Hydrogen as a perfect fuel for fuel cells and an outstanding and efficient means of bulk storage for renewable energy will spearhead this development together with fuel cells. Moreover, small fuel cells hold great potential for portable devices such as gadgets and medical applications such as pacemakers. This handbook will explore specific fuel cells within and beyond the mainstream development and focuses on materials and production processes for both SOFC and lowtemperature fuel cells, analytics and diagnostics for fuel cells, modeling and simulation as well as balance of plant design and components. As fuel cells are getting increasingly sophisticated and industrially developed the issues of quality assurance and methodology of development are included in this handbook. The contributions to this book come from an international panel of experts from academia, industry, institutions and government. This handbook is oriented toward people looking for detailed information on specific fuel cell types, their materials, production processes, modeling and analytics. Overview information on the contrary on mainstream fuel cells and applications are provided in the book 'Hydrogen and Fuel Cells', published in 2010.

Polymer Electrolyte Fuel Cells 11

Polymer Electrolyte Fuel Cells 11 PDF Author: H. A. Gasteiger
Publisher: The Electrochemical Society
ISBN: 1607682540
Category : Fuel cells
Languages : en
Pages : 2388

Get Book Here

Book Description