Author: Lei Zhang
Publisher: CRC Press
ISBN: 0429959591
Category : Science
Languages : en
Pages : 301
Book Description
The book provides a comprehensive understanding of the principles for operating lithium-ion supercapacitors (LISCs), their challenges, technological trends and perspectives. LISC technology has high potential to replace conventional rechargeable batteries such as lead-acid and nickel metal hydride batteries for automotive, portable electronics, and stationary applications. The book offers detailed analysis of LISCs at the material, component, and system levels to evaluate the different approaches to their integration. It also discusses economics, market, manufacture, and commercialization status of LISCs. It is an up-to-date study of an emerging field, written by experts, ideal for those in academia and industry who want a detailed explanation of the technology.
Lithium-Ion Supercapacitors
Author: Lei Zhang
Publisher: CRC Press
ISBN: 0429959591
Category : Science
Languages : en
Pages : 301
Book Description
The book provides a comprehensive understanding of the principles for operating lithium-ion supercapacitors (LISCs), their challenges, technological trends and perspectives. LISC technology has high potential to replace conventional rechargeable batteries such as lead-acid and nickel metal hydride batteries for automotive, portable electronics, and stationary applications. The book offers detailed analysis of LISCs at the material, component, and system levels to evaluate the different approaches to their integration. It also discusses economics, market, manufacture, and commercialization status of LISCs. It is an up-to-date study of an emerging field, written by experts, ideal for those in academia and industry who want a detailed explanation of the technology.
Publisher: CRC Press
ISBN: 0429959591
Category : Science
Languages : en
Pages : 301
Book Description
The book provides a comprehensive understanding of the principles for operating lithium-ion supercapacitors (LISCs), their challenges, technological trends and perspectives. LISC technology has high potential to replace conventional rechargeable batteries such as lead-acid and nickel metal hydride batteries for automotive, portable electronics, and stationary applications. The book offers detailed analysis of LISCs at the material, component, and system levels to evaluate the different approaches to their integration. It also discusses economics, market, manufacture, and commercialization status of LISCs. It is an up-to-date study of an emerging field, written by experts, ideal for those in academia and industry who want a detailed explanation of the technology.
Supercapacitors
Author: Francois Beguin
Publisher: John Wiley & Sons
ISBN: 352764668X
Category : Technology & Engineering
Languages : en
Pages : 596
Book Description
Supercapacitors are a relatively new energy storage system that provides higher energy density than dielectric capacitors and higher power density than batteries. They are particularly suited to applications that require energy pulses during short periods of time, e.g., seconds or tens of seconds. They are recommended for automobiles, tramways, buses, cranes, fork-lifts, wind turbines, electricity load leveling in stationary and transportation systems, etc. Despite the technological maturity of supercapacitors, there is a lack of comprehensive literature on the topic. Many high performance materials have been developed and new scientific concepts have been introduced. Taking into account the commercial interest in these systems and the new scientific and technological developments now is the ideal time to publish this book, capturing all this new knowledge. The book starts by giving an introduction to the general principles of electrochemistry, the properties of electrochemical capacitors, and electrochemical characterization techniques. Electrical double layer capacitors and pseudocapacitors are then discussed, followed by the various electrolyte systems. Modelling, manufacture of industrial capacitors, constraints, testing, and reliability as well as applications are also covered. 'Supercapacitors - Materials, Systems, and Applications' is part of the series on Materials for Sustainable Energy and Development edited by Prof. G.Q. Max Lu. The series covers advances in materials science and innovation for renewable energy, clean use of fossil energy, and greenhouse gas mitigation and associated environmental technologies.
Publisher: John Wiley & Sons
ISBN: 352764668X
Category : Technology & Engineering
Languages : en
Pages : 596
Book Description
Supercapacitors are a relatively new energy storage system that provides higher energy density than dielectric capacitors and higher power density than batteries. They are particularly suited to applications that require energy pulses during short periods of time, e.g., seconds or tens of seconds. They are recommended for automobiles, tramways, buses, cranes, fork-lifts, wind turbines, electricity load leveling in stationary and transportation systems, etc. Despite the technological maturity of supercapacitors, there is a lack of comprehensive literature on the topic. Many high performance materials have been developed and new scientific concepts have been introduced. Taking into account the commercial interest in these systems and the new scientific and technological developments now is the ideal time to publish this book, capturing all this new knowledge. The book starts by giving an introduction to the general principles of electrochemistry, the properties of electrochemical capacitors, and electrochemical characterization techniques. Electrical double layer capacitors and pseudocapacitors are then discussed, followed by the various electrolyte systems. Modelling, manufacture of industrial capacitors, constraints, testing, and reliability as well as applications are also covered. 'Supercapacitors - Materials, Systems, and Applications' is part of the series on Materials for Sustainable Energy and Development edited by Prof. G.Q. Max Lu. The series covers advances in materials science and innovation for renewable energy, clean use of fossil energy, and greenhouse gas mitigation and associated environmental technologies.
Sodium-Ion Capacitors
Author: Guoqiang Zou
Publisher: John Wiley & Sons
ISBN: 3527350373
Category : Technology & Engineering
Languages : en
Pages : 277
Book Description
Sodium-Ion Capacitors Enables readers to quickly understand core issues and field development of sodium-ion capacitors Sodium-Ion Capacitors summarizes and outlines the dynamics and development of sodium-ion capacitors, covering key aspects of the technology including background, classification and configuration, key technologies, and more, allowing readers to gain an understanding of sodium-ion capacitors from the perspective of both industrial technology and electrochemistry. Sodium-Ion Capacitors includes information on: EDLC-type mechanism of SCs and battery-type mechanism of SIBs, definition and types of pseudocapacitance, and energy storage mechanism of pseudocapacitors Cathode materials for sodium-ion capacitors, covering EDLC cathode materials, carbon nanotubes, reduced graphene oxide, and hollow carbon microspheres Flexible battery-type anode and capacitive cathode SICs cell configurations, including flexible electrodes based on carbon nanofiber, graphene substrates, carbon cloth, MXenes, and metal foil Pre-sodiation technologies, covering operation with Li metal, usage of Li-based alternatives, and the sacrificial additives method Summarizing the development, directions, potential, and core issues of sodium-ion capacitors, Sodium-Ion Capacitors is an essential resource on the subject for materials scientists, solid-state chemists and electrochemists, and semiconductor physicists in both industry and academia.
Publisher: John Wiley & Sons
ISBN: 3527350373
Category : Technology & Engineering
Languages : en
Pages : 277
Book Description
Sodium-Ion Capacitors Enables readers to quickly understand core issues and field development of sodium-ion capacitors Sodium-Ion Capacitors summarizes and outlines the dynamics and development of sodium-ion capacitors, covering key aspects of the technology including background, classification and configuration, key technologies, and more, allowing readers to gain an understanding of sodium-ion capacitors from the perspective of both industrial technology and electrochemistry. Sodium-Ion Capacitors includes information on: EDLC-type mechanism of SCs and battery-type mechanism of SIBs, definition and types of pseudocapacitance, and energy storage mechanism of pseudocapacitors Cathode materials for sodium-ion capacitors, covering EDLC cathode materials, carbon nanotubes, reduced graphene oxide, and hollow carbon microspheres Flexible battery-type anode and capacitive cathode SICs cell configurations, including flexible electrodes based on carbon nanofiber, graphene substrates, carbon cloth, MXenes, and metal foil Pre-sodiation technologies, covering operation with Li metal, usage of Li-based alternatives, and the sacrificial additives method Summarizing the development, directions, potential, and core issues of sodium-ion capacitors, Sodium-Ion Capacitors is an essential resource on the subject for materials scientists, solid-state chemists and electrochemists, and semiconductor physicists in both industry and academia.
Energy Storage Devices for Electronic Systems
Author: Nihal Kularatna
Publisher: Academic Press
ISBN: 0124081193
Category : Science
Languages : en
Pages : 282
Book Description
Energy storage devices are a crucial area of research and development across many engineering disciplines and industries. While batteries provide the significant advantage of high energy density, their limited life cycles, disposal challenges and charge and discharge management constraints undercut their effectiveness in certain applications. Compared to electrochemical cells, supercapacitors are charge-storage devices with much longer life cycles, yet they have traditionally been hobbled by limited DC voltage capabilities and energy density. However, recent advances are improving these issues. This book provides the opportunity to expand your knowledge of innovative supercapacitor applications, comparing them to other commonly used energy storage devices. It will strengthen your understanding of energy storage from a practical, applications-based point-of-view, without requiring detailed examination of underlying electrochemical equations. No matter what your field, you will find inspiration and guidance in the cutting-edge advances in energy storage devices in this book. - Provides explanations of the latest energy storage devices in a practical applications-based context - Includes examples of circuit designs that optimize the use of supercapacitors, and pathways to improve existing designs by effectively managing energy storage devices crucial to both low and high power applications. - Covers batteries, BMS (battery management systems) and cutting-edge advances in supercapacitors, providing a unique compare and contrast examination demonstrating applications where each technology can offer unique benefits
Publisher: Academic Press
ISBN: 0124081193
Category : Science
Languages : en
Pages : 282
Book Description
Energy storage devices are a crucial area of research and development across many engineering disciplines and industries. While batteries provide the significant advantage of high energy density, their limited life cycles, disposal challenges and charge and discharge management constraints undercut their effectiveness in certain applications. Compared to electrochemical cells, supercapacitors are charge-storage devices with much longer life cycles, yet they have traditionally been hobbled by limited DC voltage capabilities and energy density. However, recent advances are improving these issues. This book provides the opportunity to expand your knowledge of innovative supercapacitor applications, comparing them to other commonly used energy storage devices. It will strengthen your understanding of energy storage from a practical, applications-based point-of-view, without requiring detailed examination of underlying electrochemical equations. No matter what your field, you will find inspiration and guidance in the cutting-edge advances in energy storage devices in this book. - Provides explanations of the latest energy storage devices in a practical applications-based context - Includes examples of circuit designs that optimize the use of supercapacitors, and pathways to improve existing designs by effectively managing energy storage devices crucial to both low and high power applications. - Covers batteries, BMS (battery management systems) and cutting-edge advances in supercapacitors, providing a unique compare and contrast examination demonstrating applications where each technology can offer unique benefits
Advances in Lithium-Ion Batteries
Author: Walter van Schalkwijk
Publisher: Springer Science & Business Media
ISBN: 0306475081
Category : Science
Languages : en
Pages : 514
Book Description
In the decade since the introduction of the first commercial lithium-ion battery research and development on virtually every aspect of the chemistry and engineering of these systems has proceeded at unprecedented levels. This book is a snapshot of the state-of-the-art and where the work is going in the near future. The book is intended not only for researchers, but also for engineers and users of lithium-ion batteries which are found in virtually every type of portable electronic product.
Publisher: Springer Science & Business Media
ISBN: 0306475081
Category : Science
Languages : en
Pages : 514
Book Description
In the decade since the introduction of the first commercial lithium-ion battery research and development on virtually every aspect of the chemistry and engineering of these systems has proceeded at unprecedented levels. This book is a snapshot of the state-of-the-art and where the work is going in the near future. The book is intended not only for researchers, but also for engineers and users of lithium-ion batteries which are found in virtually every type of portable electronic product.
Supercapacitors Based on Carbon or Pseudocapacitive Materials
Author: Patrice Simon
Publisher: John Wiley & Sons
ISBN: 1848217226
Category : Science
Languages : en
Pages : 130
Book Description
Electrochemical capacitors are electrochemical energy storage devices able to quickly deliver or store large quantities of energy. They have stimulated numerous innovations throughout the last 20 years and are now implemented in many fields. Supercapacitors Based on Carbon or Pseudocapacitive Materials provides the scientific basis for a better understanding of the characteristics and performance of electrochemical capacitors based on electrochemical double layer electrodes or pseudocapacitive materials, as well as providing information on the design and conception of new devices such as lithium-ion capacitors. This book details the various applications of supercapacitors, ranging from power electronics and stationary use, to transportation (hybrid vehicles, trams, planes, etc.). They are increasingly used in the automotive sector, especially as part of stop/start systems that have allowed for energy recovery through braking and reduced fuel consumption.
Publisher: John Wiley & Sons
ISBN: 1848217226
Category : Science
Languages : en
Pages : 130
Book Description
Electrochemical capacitors are electrochemical energy storage devices able to quickly deliver or store large quantities of energy. They have stimulated numerous innovations throughout the last 20 years and are now implemented in many fields. Supercapacitors Based on Carbon or Pseudocapacitive Materials provides the scientific basis for a better understanding of the characteristics and performance of electrochemical capacitors based on electrochemical double layer electrodes or pseudocapacitive materials, as well as providing information on the design and conception of new devices such as lithium-ion capacitors. This book details the various applications of supercapacitors, ranging from power electronics and stationary use, to transportation (hybrid vehicles, trams, planes, etc.). They are increasingly used in the automotive sector, especially as part of stop/start systems that have allowed for energy recovery through braking and reduced fuel consumption.
Lithium-ion Batteries
Author:
Publisher:
ISBN: 9783030168001
Category : Lithium ion batteries
Languages : en
Pages : 247
Book Description
"This is the first machine-generated scientific book in chemistry published by Springer Nature. Serving as an innovative prototype defining the current status of the technology, it also provides an overview about the latest trends of lithium-ion batteries research. This book explores future ways of informing researchers and professionals. State-of-the-art computer algorithms were applied to: select relevant sources from Springer Nature publications, arrange these in a topical order, and provide succinct summaries of these articles. The result is a cross-corpora auto-summarization of current texts, organized by means of a similarity-based clustering routine in coherent chapters and sections. This book summarizes more than 150 research articles published from 2016 to 2018 and provides an informative and concise overview of recent research into anode and cathode materials as well as further aspects such as separators, polymer electrolytes, thermal behavior and modelling. With this prototype, Springer Nature has begun an innovative journey to explore the field of machine-generated content and to find answers to the manifold questions on this fascinating topic. Therefore it was intentionally decided not to manually polish or copy-edit any of the texts so as to highlight the current status and remaining boundaries of machine-generated content. Our goal is to initiate a broad discussion, together with the research community and domain experts, about the future opportunities, challenges and limitations of this technology."--Publisher's website.
Publisher:
ISBN: 9783030168001
Category : Lithium ion batteries
Languages : en
Pages : 247
Book Description
"This is the first machine-generated scientific book in chemistry published by Springer Nature. Serving as an innovative prototype defining the current status of the technology, it also provides an overview about the latest trends of lithium-ion batteries research. This book explores future ways of informing researchers and professionals. State-of-the-art computer algorithms were applied to: select relevant sources from Springer Nature publications, arrange these in a topical order, and provide succinct summaries of these articles. The result is a cross-corpora auto-summarization of current texts, organized by means of a similarity-based clustering routine in coherent chapters and sections. This book summarizes more than 150 research articles published from 2016 to 2018 and provides an informative and concise overview of recent research into anode and cathode materials as well as further aspects such as separators, polymer electrolytes, thermal behavior and modelling. With this prototype, Springer Nature has begun an innovative journey to explore the field of machine-generated content and to find answers to the manifold questions on this fascinating topic. Therefore it was intentionally decided not to manually polish or copy-edit any of the texts so as to highlight the current status and remaining boundaries of machine-generated content. Our goal is to initiate a broad discussion, together with the research community and domain experts, about the future opportunities, challenges and limitations of this technology."--Publisher's website.
Springer Handbook of Aerogels
Author: Michel A. Aegerter
Publisher: Springer Nature
ISBN: 3030273229
Category : Technology & Engineering
Languages : en
Pages : 1778
Book Description
This indispensable handbook provides comprehensive coverage of the current state-of-the-art in inorganic, organic, and composite aerogels – from synthesis and characterization to cutting-edge applications and their potential market impact. Built upon Springer’s successful Aerogels Handbook published in 2011, this handbook features extensive revisions and timely updates, reflecting the changes in this fast-growing field. Aerogels are the lightest solids known to man. Up to 1000 times lighter than glass and with a density only four times that of air, they possess extraordinarily high thermal, electrical, and acoustic insulation properties, and boast numerous entries in Guinness World Records. Originally based on silica, R&D efforts have extended this class of materials to incorporate non-silicate inorganic oxides, natural and synthetic organic polymers, carbon, metal, and ceramic materials. Composite systems involving polymer-crosslinked aerogels and interpenetrating hybrid networks have been developed and exhibit remarkable mechanical strength and flexibility. Even more exotic aerogels based on clays, chalcogenides, phosphides, quantum dots, and biopolymers such as chitosan are opening new applications for the construction, transportation, energy, defense and healthcare industries. Applications in electronics, chemistry, mechanics, engineering, energy production and storage, sensors, medicine, nanotechnology, military and aerospace, oil and gas recovery, thermal insulation, and household uses are being developed. Readers of this fully updated and expanded edition will find an exhaustive source for all aerogel materials known today, their fabrication, upscaling aspects, physical and chemical properties, and the most recent advances towards applications and commercial use. This key reference is essential reading for a combined audience of graduate students, academic researchers, and industry professionals.
Publisher: Springer Nature
ISBN: 3030273229
Category : Technology & Engineering
Languages : en
Pages : 1778
Book Description
This indispensable handbook provides comprehensive coverage of the current state-of-the-art in inorganic, organic, and composite aerogels – from synthesis and characterization to cutting-edge applications and their potential market impact. Built upon Springer’s successful Aerogels Handbook published in 2011, this handbook features extensive revisions and timely updates, reflecting the changes in this fast-growing field. Aerogels are the lightest solids known to man. Up to 1000 times lighter than glass and with a density only four times that of air, they possess extraordinarily high thermal, electrical, and acoustic insulation properties, and boast numerous entries in Guinness World Records. Originally based on silica, R&D efforts have extended this class of materials to incorporate non-silicate inorganic oxides, natural and synthetic organic polymers, carbon, metal, and ceramic materials. Composite systems involving polymer-crosslinked aerogels and interpenetrating hybrid networks have been developed and exhibit remarkable mechanical strength and flexibility. Even more exotic aerogels based on clays, chalcogenides, phosphides, quantum dots, and biopolymers such as chitosan are opening new applications for the construction, transportation, energy, defense and healthcare industries. Applications in electronics, chemistry, mechanics, engineering, energy production and storage, sensors, medicine, nanotechnology, military and aerospace, oil and gas recovery, thermal insulation, and household uses are being developed. Readers of this fully updated and expanded edition will find an exhaustive source for all aerogel materials known today, their fabrication, upscaling aspects, physical and chemical properties, and the most recent advances towards applications and commercial use. This key reference is essential reading for a combined audience of graduate students, academic researchers, and industry professionals.
Supercapacitors
Author: Syam G. Krishnan
Publisher: Elsevier
ISBN: 0443154775
Category : Technology & Engineering
Languages : en
Pages : 435
Book Description
Supercapacitors: Materials, Design, and Commercialization provides a comprehensive overview of the latest research trends and opportunities in supercapacitors, and particularly in terms of novel materials and electrolytes.The book will address the transformation in supercapacitive technology from double layer capacitance to battery-type capacitance, providing a clear understanding of the conceptual differences between various charge storage processes for supercapacitors, charge storage based on materials and electrolytes, and calculation for capacitance for these charge processes. Detailed chapters discuss recent developments in materials, such as carbons, chalcogenides, MXene and phosphorene, various polymer nanocomposites, and polyoxometalates for supercapacitors. This is followed by in-depth coverage of electrolytes, including the evolution of electrolytes from aqueous to water-in-salt electrolytes and their role in improving the energy density of supercapacitors. The final part of the book examines the role of artificial intelligence in the design of supercapacitors, and latest developments in translating novel supercapacitor technologies from laboratory-scale research to a commercialization.This is a valuable resource for advanced students, researchers, and scientists in the fields of energy storage, electrical engineering, materials science, and chemical engineering, as well as engineers and R&D personnel working with supercapacitors or energy storage in an industrial setting. - Brings together the latest developments in supercapacitor materials and electrolytes - Discusses cutting-edge charge storage concepts and methods for supercapacitors - Addresses the role of machine learning and the scale-up from laboratory to commercialization
Publisher: Elsevier
ISBN: 0443154775
Category : Technology & Engineering
Languages : en
Pages : 435
Book Description
Supercapacitors: Materials, Design, and Commercialization provides a comprehensive overview of the latest research trends and opportunities in supercapacitors, and particularly in terms of novel materials and electrolytes.The book will address the transformation in supercapacitive technology from double layer capacitance to battery-type capacitance, providing a clear understanding of the conceptual differences between various charge storage processes for supercapacitors, charge storage based on materials and electrolytes, and calculation for capacitance for these charge processes. Detailed chapters discuss recent developments in materials, such as carbons, chalcogenides, MXene and phosphorene, various polymer nanocomposites, and polyoxometalates for supercapacitors. This is followed by in-depth coverage of electrolytes, including the evolution of electrolytes from aqueous to water-in-salt electrolytes and their role in improving the energy density of supercapacitors. The final part of the book examines the role of artificial intelligence in the design of supercapacitors, and latest developments in translating novel supercapacitor technologies from laboratory-scale research to a commercialization.This is a valuable resource for advanced students, researchers, and scientists in the fields of energy storage, electrical engineering, materials science, and chemical engineering, as well as engineers and R&D personnel working with supercapacitors or energy storage in an industrial setting. - Brings together the latest developments in supercapacitor materials and electrolytes - Discusses cutting-edge charge storage concepts and methods for supercapacitors - Addresses the role of machine learning and the scale-up from laboratory to commercialization
Microsupercapacitors
Author: Kazufumi Kobashi
Publisher: Woodhead Publishing
ISBN: 008102889X
Category : Technology & Engineering
Languages : en
Pages : 312
Book Description
Microsupercapacitors systematically guides the reader through the key materials, characterization techniques, performance factors and potential applications and benefits to society of this emerging electrical energy storage solution. The book reviews the technical challenges in scaling down supercapacitors, covering materials, performance, design and applications perspectives. Sections provide a fundamental understanding of microsupercapacitors and compare them to existing energy storage technologies. Final discussions consider the factors that impact performance, potential tactics to improve performance, barriers to implementation, emerging solutions to those barriers, and a future outlook. This book will be of particular interest to materials scientists and engineers working in academia, research and development. - Provides a concise introduction of the fundamental science, related technological challenges, and solutions that microsupercapacitors can offer - Compares microsupercapacitors with current technologies - Reviews the applications of new strategies and the challenge of scaling down supercapacitors - Covers the most relevant applications, including energy storage, energy harvesting, sensors and biomedical devices
Publisher: Woodhead Publishing
ISBN: 008102889X
Category : Technology & Engineering
Languages : en
Pages : 312
Book Description
Microsupercapacitors systematically guides the reader through the key materials, characterization techniques, performance factors and potential applications and benefits to society of this emerging electrical energy storage solution. The book reviews the technical challenges in scaling down supercapacitors, covering materials, performance, design and applications perspectives. Sections provide a fundamental understanding of microsupercapacitors and compare them to existing energy storage technologies. Final discussions consider the factors that impact performance, potential tactics to improve performance, barriers to implementation, emerging solutions to those barriers, and a future outlook. This book will be of particular interest to materials scientists and engineers working in academia, research and development. - Provides a concise introduction of the fundamental science, related technological challenges, and solutions that microsupercapacitors can offer - Compares microsupercapacitors with current technologies - Reviews the applications of new strategies and the challenge of scaling down supercapacitors - Covers the most relevant applications, including energy storage, energy harvesting, sensors and biomedical devices