Author: JoAnne Engebrecht
Publisher:
ISBN:
Category : Bioluminescence
Languages : en
Pages : 302
Book Description
Genetic Regulation of Bacterial Bioluminescence
Author: JoAnne Engebrecht
Publisher:
ISBN:
Category : Bioluminescence
Languages : en
Pages : 302
Book Description
Publisher:
ISBN:
Category : Bioluminescence
Languages : en
Pages : 302
Book Description
Bioluminescence: Fundamentals and Applications in Biotechnology - Volume 1
Author: Gérald Thouand
Publisher: Springer
ISBN: 3662433850
Category : Science
Languages : en
Pages : 204
Book Description
This book review series presents current trends in modern biotechnology. The aim is to cover all aspects of this interdisciplinary technology where knowledge, methods and expertise are required from chemistry, biochemistry, microbiology, genetics, chemical engineering and computer science. Volumes are organized topically and provide a comprehensive discussion of developments in the respective field over the past 3-5 years. The series also discusses new discoveries and applications. Special volumes are dedicated to selected topics which focus on new biotechnological products and new processes for their synthesis and purification. In general, special volumes are edited by well-known guest editors. The series editor and publisher will however always be pleased to receive suggestions and supplementary information. Manuscripts are accepted in English.
Publisher: Springer
ISBN: 3662433850
Category : Science
Languages : en
Pages : 204
Book Description
This book review series presents current trends in modern biotechnology. The aim is to cover all aspects of this interdisciplinary technology where knowledge, methods and expertise are required from chemistry, biochemistry, microbiology, genetics, chemical engineering and computer science. Volumes are organized topically and provide a comprehensive discussion of developments in the respective field over the past 3-5 years. The series also discusses new discoveries and applications. Special volumes are dedicated to selected topics which focus on new biotechnological products and new processes for their synthesis and purification. In general, special volumes are edited by well-known guest editors. The series editor and publisher will however always be pleased to receive suggestions and supplementary information. Manuscripts are accepted in English.
Bioluminescence: Chemical Principles And Methods (3rd Edition)
Author: Osamu Shimomura
Publisher: World Scientific
ISBN: 9813277122
Category : Science
Languages : en
Pages : 557
Book Description
This book is the bible of bioluminescence and a must-read not only for the students but for those who work in various fields relating to bioluminescence. It summarizes current structural information on all known bioluminescent systems in nature, from well-studied ones to those that have been seldom investigated.This book remains an important source of chemical knowledge on bioluminescence and, since the second edition's publication in 2012, has been revised to include major developments in two systems: earthworm Fridericia and higher fungi whose luciferins have been elucidated and synthesized. These two new luciferins represent an essential addition to seven previously known, with fully rewritten sections covering this new subject matter.
Publisher: World Scientific
ISBN: 9813277122
Category : Science
Languages : en
Pages : 557
Book Description
This book is the bible of bioluminescence and a must-read not only for the students but for those who work in various fields relating to bioluminescence. It summarizes current structural information on all known bioluminescent systems in nature, from well-studied ones to those that have been seldom investigated.This book remains an important source of chemical knowledge on bioluminescence and, since the second edition's publication in 2012, has been revised to include major developments in two systems: earthworm Fridericia and higher fungi whose luciferins have been elucidated and synthesized. These two new luciferins represent an essential addition to seven previously known, with fully rewritten sections covering this new subject matter.
Bacterial Biofilms
Author: Tony Romeo
Publisher: Springer Science & Business Media
ISBN: 3540754180
Category : Medical
Languages : en
Pages : 302
Book Description
Throughout the biological world, bacteria thrive predominantly in surface-attached, matrix-enclosed, multicellular communities or biofilms, as opposed to isolated planktonic cells. This choice of lifestyle is not trivial, as it involves major shifts in the use of genetic information and cellular energy, and has profound consequences for bacterial physiology and survival. Growth within a biofilm can thwart immune function and antibiotic therapy and thereby complicate the treatment of infectious diseases, especially chronic and foreign device-associated infections. Modern studies of many important biofilms have advanced well beyond the descriptive stage, and have begun to provide molecular details of the structural, biochemical, and genetic processes that drive biofilm formation and its dispersion. There is much diversity in the details of biofilm development among various species, but there are also commonalities. In most species, environmental and nutritional conditions greatly influence biofilm development. Similar kinds of adhesive molecules often promote biofilm formation in diverse species. Signaling and regulatory processes that drive biofilm development are often conserved, especially among related bacteria. Knowledge of such processes holds great promise for efforts to control biofilm growth and combat biofilm-associated infections. This volume focuses on the biology of biofilms that affect human disease, although it is by no means comprehensive. It opens with chapters that provide the reader with current perspectives on biofilm development, physiology, environmental, and regulatory effects, the role of quorum sensing, and resistance/phenotypic persistence to antimicrobial agents during biofilm growth.
Publisher: Springer Science & Business Media
ISBN: 3540754180
Category : Medical
Languages : en
Pages : 302
Book Description
Throughout the biological world, bacteria thrive predominantly in surface-attached, matrix-enclosed, multicellular communities or biofilms, as opposed to isolated planktonic cells. This choice of lifestyle is not trivial, as it involves major shifts in the use of genetic information and cellular energy, and has profound consequences for bacterial physiology and survival. Growth within a biofilm can thwart immune function and antibiotic therapy and thereby complicate the treatment of infectious diseases, especially chronic and foreign device-associated infections. Modern studies of many important biofilms have advanced well beyond the descriptive stage, and have begun to provide molecular details of the structural, biochemical, and genetic processes that drive biofilm formation and its dispersion. There is much diversity in the details of biofilm development among various species, but there are also commonalities. In most species, environmental and nutritional conditions greatly influence biofilm development. Similar kinds of adhesive molecules often promote biofilm formation in diverse species. Signaling and regulatory processes that drive biofilm development are often conserved, especially among related bacteria. Knowledge of such processes holds great promise for efforts to control biofilm growth and combat biofilm-associated infections. This volume focuses on the biology of biofilms that affect human disease, although it is by no means comprehensive. It opens with chapters that provide the reader with current perspectives on biofilm development, physiology, environmental, and regulatory effects, the role of quorum sensing, and resistance/phenotypic persistence to antimicrobial agents during biofilm growth.
Cell-cell Signaling in Bacteria
Author: Gary M. Dunny
Publisher:
ISBN: 9781555811495
Category : Bacteria
Languages : en
Pages : 0
Book Description
"This volume presents the first comprehensive review of bacterial quorum sensing, the signaling processes involved in control of multicellular activities of microbes. It reflects the explosion of knowledge in this area, and the realization that work being done in each of the signaling systems being studied may have important implications for other organisms not closely related by phylogeny or ecological niche."--BOOK JACKET.
Publisher:
ISBN: 9781555811495
Category : Bacteria
Languages : en
Pages : 0
Book Description
"This volume presents the first comprehensive review of bacterial quorum sensing, the signaling processes involved in control of multicellular activities of microbes. It reflects the explosion of knowledge in this area, and the realization that work being done in each of the signaling systems being studied may have important implications for other organisms not closely related by phylogeny or ecological niche."--BOOK JACKET.
The Social Biology of Microbial Communities
Author: Institute of Medicine
Publisher: National Academies Press
ISBN: 0309264324
Category : Medical
Languages : en
Pages : 633
Book Description
Beginning with the germ theory of disease in the 19th century and extending through most of the 20th century, microbes were believed to live their lives as solitary, unicellular, disease-causing organisms . This perception stemmed from the focus of most investigators on organisms that could be grown in the laboratory as cellular monocultures, often dispersed in liquid, and under ambient conditions of temperature, lighting, and humidity. Most such inquiries were designed to identify microbial pathogens by satisfying Koch's postulates.3 This pathogen-centric approach to the study of microorganisms produced a metaphorical "war" against these microbial invaders waged with antibiotic therapies, while simultaneously obscuring the dynamic relationships that exist among and between host organisms and their associated microorganisms-only a tiny fraction of which act as pathogens. Despite their obvious importance, very little is actually known about the processes and factors that influence the assembly, function, and stability of microbial communities. Gaining this knowledge will require a seismic shift away from the study of individual microbes in isolation to inquiries into the nature of diverse and often complex microbial communities, the forces that shape them, and their relationships with other communities and organisms, including their multicellular hosts. On March 6 and 7, 2012, the Institute of Medicine's (IOM's) Forum on Microbial Threats hosted a public workshop to explore the emerging science of the "social biology" of microbial communities. Workshop presentations and discussions embraced a wide spectrum of topics, experimental systems, and theoretical perspectives representative of the current, multifaceted exploration of the microbial frontier. Participants discussed ecological, evolutionary, and genetic factors contributing to the assembly, function, and stability of microbial communities; how microbial communities adapt and respond to environmental stimuli; theoretical and experimental approaches to advance this nascent field; and potential applications of knowledge gained from the study of microbial communities for the improvement of human, animal, plant, and ecosystem health and toward a deeper understanding of microbial diversity and evolution. The Social Biology of Microbial Communities: Workshop Summary further explains the happenings of the workshop.
Publisher: National Academies Press
ISBN: 0309264324
Category : Medical
Languages : en
Pages : 633
Book Description
Beginning with the germ theory of disease in the 19th century and extending through most of the 20th century, microbes were believed to live their lives as solitary, unicellular, disease-causing organisms . This perception stemmed from the focus of most investigators on organisms that could be grown in the laboratory as cellular monocultures, often dispersed in liquid, and under ambient conditions of temperature, lighting, and humidity. Most such inquiries were designed to identify microbial pathogens by satisfying Koch's postulates.3 This pathogen-centric approach to the study of microorganisms produced a metaphorical "war" against these microbial invaders waged with antibiotic therapies, while simultaneously obscuring the dynamic relationships that exist among and between host organisms and their associated microorganisms-only a tiny fraction of which act as pathogens. Despite their obvious importance, very little is actually known about the processes and factors that influence the assembly, function, and stability of microbial communities. Gaining this knowledge will require a seismic shift away from the study of individual microbes in isolation to inquiries into the nature of diverse and often complex microbial communities, the forces that shape them, and their relationships with other communities and organisms, including their multicellular hosts. On March 6 and 7, 2012, the Institute of Medicine's (IOM's) Forum on Microbial Threats hosted a public workshop to explore the emerging science of the "social biology" of microbial communities. Workshop presentations and discussions embraced a wide spectrum of topics, experimental systems, and theoretical perspectives representative of the current, multifaceted exploration of the microbial frontier. Participants discussed ecological, evolutionary, and genetic factors contributing to the assembly, function, and stability of microbial communities; how microbial communities adapt and respond to environmental stimuli; theoretical and experimental approaches to advance this nascent field; and potential applications of knowledge gained from the study of microbial communities for the improvement of human, animal, plant, and ecosystem health and toward a deeper understanding of microbial diversity and evolution. The Social Biology of Microbial Communities: Workshop Summary further explains the happenings of the workshop.
Quorum Sensing vs Quorum Quenching: A Battle with No End in Sight
Author: Vipin Chandra Kalia
Publisher: Springer
ISBN: 9788132235484
Category : Science
Languages : en
Pages : 0
Book Description
Microbial relationships with all life forms can be as free living, symbiotic or pathogenic. Human beings harbor 10 times more microbial cells than their own. Bacteria are found on the skin surface, in the gut and other body parts. Bacteria causing diseases are the most worrisome. Most of the infectious diseases are caused by bacterial pathogens with an ability to form biofilm. Bacteria within the biofilm are up to 1000 times more resistant to antibiotics. This has taken a more serious turn with the evolution of multiple drug resistant bacteria. Health Departments are making efforts to reduce high mortality and morbidity in man caused by them. Bacterial Quorum sensing (QS), a cell density dependent phenomenon is responsible for a wide range of expressions such as pathogenesis, biofilm formation, competence, sporulation, nitrogen fixation, etc. Majority of these organisms that are important for medical, agriculture, aquaculture, water treatment and remediation, archaeological departments are: Aeromonas, Acinetobacter, Bacillus, Clostridia, Enterococcus, Pseudomonas, Vibrio and Yersinia spp. Biosensors and models have been developed to detect QS systems. Strategies for inhibiting QS system through natural and synthetic compounds have been presented here. The biotechnological applications of QS inhibitors (QSIs) in diverse areas have also been dealt with. Although QSIs do not affect growth and are less likely to impose selective pressure on bacteria, however, a few reports have raised doubts on the fate of QSIs. This book addresses a few questions. Will bacteria develop mechanisms to evade QSIs? Are we watching yet another defeat at the hands of bacteria? Or will we be acting intelligently and survive the onslaughts of this Never Ending battle?
Publisher: Springer
ISBN: 9788132235484
Category : Science
Languages : en
Pages : 0
Book Description
Microbial relationships with all life forms can be as free living, symbiotic or pathogenic. Human beings harbor 10 times more microbial cells than their own. Bacteria are found on the skin surface, in the gut and other body parts. Bacteria causing diseases are the most worrisome. Most of the infectious diseases are caused by bacterial pathogens with an ability to form biofilm. Bacteria within the biofilm are up to 1000 times more resistant to antibiotics. This has taken a more serious turn with the evolution of multiple drug resistant bacteria. Health Departments are making efforts to reduce high mortality and morbidity in man caused by them. Bacterial Quorum sensing (QS), a cell density dependent phenomenon is responsible for a wide range of expressions such as pathogenesis, biofilm formation, competence, sporulation, nitrogen fixation, etc. Majority of these organisms that are important for medical, agriculture, aquaculture, water treatment and remediation, archaeological departments are: Aeromonas, Acinetobacter, Bacillus, Clostridia, Enterococcus, Pseudomonas, Vibrio and Yersinia spp. Biosensors and models have been developed to detect QS systems. Strategies for inhibiting QS system through natural and synthetic compounds have been presented here. The biotechnological applications of QS inhibitors (QSIs) in diverse areas have also been dealt with. Although QSIs do not affect growth and are less likely to impose selective pressure on bacteria, however, a few reports have raised doubts on the fate of QSIs. This book addresses a few questions. Will bacteria develop mechanisms to evade QSIs? Are we watching yet another defeat at the hands of bacteria? Or will we be acting intelligently and survive the onslaughts of this Never Ending battle?
Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria
Author: Frans J. de Bruijn
Publisher: John Wiley & Sons
ISBN: 1119004896
Category : Science
Languages : en
Pages : 1472
Book Description
Bacteria in various habitats are subject to continuously changing environmental conditions, such as nutrient deprivation, heat and cold stress, UV radiation, oxidative stress, dessication, acid stress, nitrosative stress, cell envelope stress, heavy metal exposure, osmotic stress, and others. In order to survive, they have to respond to these conditions by adapting their physiology through sometimes drastic changes in gene expression. In addition they may adapt by changing their morphology, forming biofilms, fruiting bodies or spores, filaments, Viable But Not Culturable (VBNC) cells or moving away from stress compounds via chemotaxis. Changes in gene expression constitute the main component of the bacterial response to stress and environmental changes, and involve a myriad of different mechanisms, including (alternative) sigma factors, bi- or tri-component regulatory systems, small non-coding RNA’s, chaperones, CHRIS-Cas systems, DNA repair, toxin-antitoxin systems, the stringent response, efflux pumps, alarmones, and modulation of the cell envelope or membranes, to name a few. Many regulatory elements are conserved in different bacteria; however there are endless variations on the theme and novel elements of gene regulation in bacteria inhabiting particular environments are constantly being discovered. Especially in (pathogenic) bacteria colonizing the human body a plethora of bacterial responses to innate stresses such as pH, reactive nitrogen and oxygen species and antibiotic stress are being described. An attempt is made to not only cover model systems but give a broad overview of the stress-responsive regulatory systems in a variety of bacteria, including medically important bacteria, where elucidation of certain aspects of these systems could lead to treatment strategies of the pathogens. Many of the regulatory systems being uncovered are specific, but there is also considerable “cross-talk” between different circuits. Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria is a comprehensive two-volume work bringing together both review and original research articles on key topics in stress and environmental control of gene expression in bacteria. Volume One contains key overview chapters, as well as content on one/two/three component regulatory systems and stress responses, sigma factors and stress responses, small non-coding RNAs and stress responses, toxin-antitoxin systems and stress responses, stringent response to stress, responses to UV irradiation, SOS and double stranded systems repair systems and stress, adaptation to both oxidative and osmotic stress, and desiccation tolerance and drought stress. Volume Two covers heat shock responses, chaperonins and stress, cold shock responses, adaptation to acid stress, nitrosative stress, and envelope stress, as well as iron homeostasis, metal resistance, quorum sensing, chemotaxis and biofilm formation, and viable but not culturable (VBNC) cells. Covering the full breadth of current stress and environmental control of gene expression studies and expanding it towards future advances in the field, these two volumes are a one-stop reference for (non) medical molecular geneticists interested in gene regulation under stress.
Publisher: John Wiley & Sons
ISBN: 1119004896
Category : Science
Languages : en
Pages : 1472
Book Description
Bacteria in various habitats are subject to continuously changing environmental conditions, such as nutrient deprivation, heat and cold stress, UV radiation, oxidative stress, dessication, acid stress, nitrosative stress, cell envelope stress, heavy metal exposure, osmotic stress, and others. In order to survive, they have to respond to these conditions by adapting their physiology through sometimes drastic changes in gene expression. In addition they may adapt by changing their morphology, forming biofilms, fruiting bodies or spores, filaments, Viable But Not Culturable (VBNC) cells or moving away from stress compounds via chemotaxis. Changes in gene expression constitute the main component of the bacterial response to stress and environmental changes, and involve a myriad of different mechanisms, including (alternative) sigma factors, bi- or tri-component regulatory systems, small non-coding RNA’s, chaperones, CHRIS-Cas systems, DNA repair, toxin-antitoxin systems, the stringent response, efflux pumps, alarmones, and modulation of the cell envelope or membranes, to name a few. Many regulatory elements are conserved in different bacteria; however there are endless variations on the theme and novel elements of gene regulation in bacteria inhabiting particular environments are constantly being discovered. Especially in (pathogenic) bacteria colonizing the human body a plethora of bacterial responses to innate stresses such as pH, reactive nitrogen and oxygen species and antibiotic stress are being described. An attempt is made to not only cover model systems but give a broad overview of the stress-responsive regulatory systems in a variety of bacteria, including medically important bacteria, where elucidation of certain aspects of these systems could lead to treatment strategies of the pathogens. Many of the regulatory systems being uncovered are specific, but there is also considerable “cross-talk” between different circuits. Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria is a comprehensive two-volume work bringing together both review and original research articles on key topics in stress and environmental control of gene expression in bacteria. Volume One contains key overview chapters, as well as content on one/two/three component regulatory systems and stress responses, sigma factors and stress responses, small non-coding RNAs and stress responses, toxin-antitoxin systems and stress responses, stringent response to stress, responses to UV irradiation, SOS and double stranded systems repair systems and stress, adaptation to both oxidative and osmotic stress, and desiccation tolerance and drought stress. Volume Two covers heat shock responses, chaperonins and stress, cold shock responses, adaptation to acid stress, nitrosative stress, and envelope stress, as well as iron homeostasis, metal resistance, quorum sensing, chemotaxis and biofilm formation, and viable but not culturable (VBNC) cells. Covering the full breadth of current stress and environmental control of gene expression studies and expanding it towards future advances in the field, these two volumes are a one-stop reference for (non) medical molecular geneticists interested in gene regulation under stress.
Bioluminescence and Chemiluminescence
Author: Marlene A. Deluca
Publisher: Elsevier
ISBN: 1483273733
Category : Science
Languages : en
Pages : 813
Book Description
Bioluminescence and Chemiluminescence: Basic Chemistry and Analytical Applications is a compendium of papers presented at the second International Symposium on Analytical Applications of Bioluminescene and Chemiluminescence in San Diego, California on August 26-28, 1980. Part I deals with chemilunescence and excited states including topics on the spectroscopy of the solvent cage — generation and characteristics of the excited state and the three features of chemi- and bioluminescence. Part II deals with events prior to producing luminol-dependent chemiluminescence; this part also examines the effects of stimulants on membrane potential. Part III discusses bacterial bioluminescence and analyzes the properties of a lumazine protein from a bioluminescent bacterium. This part also analyzes accessory enzymes responsible for such bacterial bioluminescence. Part IV examines the chemistry of firefly bioluminescence and presents the formula of three reactions catalyzed by firefly luciferase. Part V analyzes bioluminescence from other sources such as the earthworm and land snails. Part VI discusses the applications of bioluminescence in clinical chemistry, soil science, and marine biology. Part VII deals with the future uses of bioluminescence, while Part VIII is an abstract of other papers dealing with this subject. This collection can be helpful for biologists, zoologists, micro-biologists, marine biologists, and researchers dealing with bio-chemistry and related disciplines.
Publisher: Elsevier
ISBN: 1483273733
Category : Science
Languages : en
Pages : 813
Book Description
Bioluminescence and Chemiluminescence: Basic Chemistry and Analytical Applications is a compendium of papers presented at the second International Symposium on Analytical Applications of Bioluminescene and Chemiluminescence in San Diego, California on August 26-28, 1980. Part I deals with chemilunescence and excited states including topics on the spectroscopy of the solvent cage — generation and characteristics of the excited state and the three features of chemi- and bioluminescence. Part II deals with events prior to producing luminol-dependent chemiluminescence; this part also examines the effects of stimulants on membrane potential. Part III discusses bacterial bioluminescence and analyzes the properties of a lumazine protein from a bioluminescent bacterium. This part also analyzes accessory enzymes responsible for such bacterial bioluminescence. Part IV examines the chemistry of firefly bioluminescence and presents the formula of three reactions catalyzed by firefly luciferase. Part V analyzes bioluminescence from other sources such as the earthworm and land snails. Part VI discusses the applications of bioluminescence in clinical chemistry, soil science, and marine biology. Part VII deals with the future uses of bioluminescence, while Part VIII is an abstract of other papers dealing with this subject. This collection can be helpful for biologists, zoologists, micro-biologists, marine biologists, and researchers dealing with bio-chemistry and related disciplines.
Molecular Biology of the Staphylococci
Author: Richard P. Novick
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 680
Book Description
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 680
Book Description