Author: Ian J.R. Aitchison
Publisher: CRC Press
ISBN: 1466591129
Category : Science
Languages : en
Pages : 979
Book Description
The fourth edition of this well-established, highly regarded two-volume set continues to provide a fundamental introduction to advanced particle physics while incorporating substantial new experimental results, especially in the areas of CP violation and neutrino oscillations. It offers an accessible and practical introduction to the three gauge theories included in the Standard Model of particle physics: quantum electrodynamics (QED), quantum chromodynamics (QCD), and the Glashow-Salam-Weinberg (GSW) electroweak theory. In the first volume, a new chapter on Lorentz transformations and discrete symmetries presents a simple treatment of Lorentz transformations of Dirac spinors. Along with updating experimental results, this edition also introduces Majorana fermions at an early stage, making the material suitable for a first course in relativistic quantum mechanics. Covering much of the experimental progress made in the last ten years, the second volume remains focused on the two non-Abelian quantum gauge field theories of the Standard Model: QCD and the GSW electroweak theory. A new chapter on CP violation and oscillation phenomena describes CP violation in B-meson decays as well as the main experiments that have led to our current knowledge of mass-squared differences and mixing angles for neutrinos. Exploring a new era in particle physics, this edition discusses the exciting discovery of a boson with properties consistent with those of the Standard Model Higgs boson. It also updates many other topics, including jet algorithms, lattice QCD, effective Lagrangians, and three-generation quark mixing and the CKM matrix. This revised and updated edition provides a self-contained pedagogical treatment of the subject, from relativistic quantum mechanics to the frontiers of the Standard Model. For each theory, the authors discuss the main conceptual points, detail many practical calculations of physical quantities from first principles, and compare these quantitative predictions with experimental results, helping readers improve both their calculation skills and physical insight.
Gauge Theories in Particle Physics: A Practical Introduction, Fourth Edition - 2 Volume set
Author: Ian J.R. Aitchison
Publisher: CRC Press
ISBN: 1466591129
Category : Science
Languages : en
Pages : 979
Book Description
The fourth edition of this well-established, highly regarded two-volume set continues to provide a fundamental introduction to advanced particle physics while incorporating substantial new experimental results, especially in the areas of CP violation and neutrino oscillations. It offers an accessible and practical introduction to the three gauge theories included in the Standard Model of particle physics: quantum electrodynamics (QED), quantum chromodynamics (QCD), and the Glashow-Salam-Weinberg (GSW) electroweak theory. In the first volume, a new chapter on Lorentz transformations and discrete symmetries presents a simple treatment of Lorentz transformations of Dirac spinors. Along with updating experimental results, this edition also introduces Majorana fermions at an early stage, making the material suitable for a first course in relativistic quantum mechanics. Covering much of the experimental progress made in the last ten years, the second volume remains focused on the two non-Abelian quantum gauge field theories of the Standard Model: QCD and the GSW electroweak theory. A new chapter on CP violation and oscillation phenomena describes CP violation in B-meson decays as well as the main experiments that have led to our current knowledge of mass-squared differences and mixing angles for neutrinos. Exploring a new era in particle physics, this edition discusses the exciting discovery of a boson with properties consistent with those of the Standard Model Higgs boson. It also updates many other topics, including jet algorithms, lattice QCD, effective Lagrangians, and three-generation quark mixing and the CKM matrix. This revised and updated edition provides a self-contained pedagogical treatment of the subject, from relativistic quantum mechanics to the frontiers of the Standard Model. For each theory, the authors discuss the main conceptual points, detail many practical calculations of physical quantities from first principles, and compare these quantitative predictions with experimental results, helping readers improve both their calculation skills and physical insight.
Publisher: CRC Press
ISBN: 1466591129
Category : Science
Languages : en
Pages : 979
Book Description
The fourth edition of this well-established, highly regarded two-volume set continues to provide a fundamental introduction to advanced particle physics while incorporating substantial new experimental results, especially in the areas of CP violation and neutrino oscillations. It offers an accessible and practical introduction to the three gauge theories included in the Standard Model of particle physics: quantum electrodynamics (QED), quantum chromodynamics (QCD), and the Glashow-Salam-Weinberg (GSW) electroweak theory. In the first volume, a new chapter on Lorentz transformations and discrete symmetries presents a simple treatment of Lorentz transformations of Dirac spinors. Along with updating experimental results, this edition also introduces Majorana fermions at an early stage, making the material suitable for a first course in relativistic quantum mechanics. Covering much of the experimental progress made in the last ten years, the second volume remains focused on the two non-Abelian quantum gauge field theories of the Standard Model: QCD and the GSW electroweak theory. A new chapter on CP violation and oscillation phenomena describes CP violation in B-meson decays as well as the main experiments that have led to our current knowledge of mass-squared differences and mixing angles for neutrinos. Exploring a new era in particle physics, this edition discusses the exciting discovery of a boson with properties consistent with those of the Standard Model Higgs boson. It also updates many other topics, including jet algorithms, lattice QCD, effective Lagrangians, and three-generation quark mixing and the CKM matrix. This revised and updated edition provides a self-contained pedagogical treatment of the subject, from relativistic quantum mechanics to the frontiers of the Standard Model. For each theory, the authors discuss the main conceptual points, detail many practical calculations of physical quantities from first principles, and compare these quantitative predictions with experimental results, helping readers improve both their calculation skills and physical insight.
Gauge Theories in Particle Physics, Third Edition - 2 volume set
Author: Ian J.R. Aitchison
Publisher: CRC Press
ISBN: 9780750309820
Category : Science
Languages : en
Pages : 474
Book Description
This two-volume set provides an accessible, practical, and comprehensive introduction to the three gauge theories of the standard model of particle physics: quantum electrodynamics (QED), quantum chromodynamics (QCD), and the electroweak theory. For each of them, the authors provide a thorough discussion of the main conceptual points, a detailed exposition of many practical calculations of physical quantities, and a comparison of these quantitative predictions with experimental results. For this third edition, much has been rewritten to reflect developments over the last decade, both in the curricula of university courses and in particle physics research. On the one hand, substantial new material has been introduced that is intended for use in undergraduate physics courses. New introductory chapters provide a precise historical account of the properties of quarks and leptons and a qualitative overview of the quantum field description of their interactions, at a level appropriate to third year courses. The chapter on relativistic quantum mechanics has been enlarged and is supplemented by additional sections on scattering theory and Green functions, in a form appropriate to fourth-year courses. On the other hand, since precision experiments now test the theories beyond lowest order in perturbation theory, an understanding of the data requires a more sophisticated knowledge of quantum field theory, including ideas of renormalization. The treatment of quantum field theory has therefore been considerably extended to provide a uniquely accessible and self-contained introduction to quantum field dynamics as described by Feynman graphs. The level is suitable for advanced fourth-year undergraduates and first-year graduates. These developments are all contained in the first volume, which ends with a discussion of higher order corrections in QED. The second volume is devoted to the non-Abelian gauge theories of QCD and the electroweak theory. As in the first two editions, emphasis is placed throughout on developing realistic calculations from a secure physical and conceptual basis.
Publisher: CRC Press
ISBN: 9780750309820
Category : Science
Languages : en
Pages : 474
Book Description
This two-volume set provides an accessible, practical, and comprehensive introduction to the three gauge theories of the standard model of particle physics: quantum electrodynamics (QED), quantum chromodynamics (QCD), and the electroweak theory. For each of them, the authors provide a thorough discussion of the main conceptual points, a detailed exposition of many practical calculations of physical quantities, and a comparison of these quantitative predictions with experimental results. For this third edition, much has been rewritten to reflect developments over the last decade, both in the curricula of university courses and in particle physics research. On the one hand, substantial new material has been introduced that is intended for use in undergraduate physics courses. New introductory chapters provide a precise historical account of the properties of quarks and leptons and a qualitative overview of the quantum field description of their interactions, at a level appropriate to third year courses. The chapter on relativistic quantum mechanics has been enlarged and is supplemented by additional sections on scattering theory and Green functions, in a form appropriate to fourth-year courses. On the other hand, since precision experiments now test the theories beyond lowest order in perturbation theory, an understanding of the data requires a more sophisticated knowledge of quantum field theory, including ideas of renormalization. The treatment of quantum field theory has therefore been considerably extended to provide a uniquely accessible and self-contained introduction to quantum field dynamics as described by Feynman graphs. The level is suitable for advanced fourth-year undergraduates and first-year graduates. These developments are all contained in the first volume, which ends with a discussion of higher order corrections in QED. The second volume is devoted to the non-Abelian gauge theories of QCD and the electroweak theory. As in the first two editions, emphasis is placed throughout on developing realistic calculations from a secure physical and conceptual basis.
Gauge Theories in Particle Physics: A Practical Introduction, Volume 2: Non-Abelian Gauge Theories
Author: Ian J R Aitchison
Publisher: CRC Press
ISBN: 1466513071
Category : Science
Languages : en
Pages : 524
Book Description
Volume 2 of this revised and updated edition provides an accessible and practical introduction to the two non-Abelian quantum gauge field theories of the Standard Model of particle physics: quantum chromodynamics (QCD) and the Glashow-Salam-Weinberg (GSW) electroweak theory. This volume covers much of the experimental progress made in the last ten years. A new chapter on CP violation and oscillation phenomena describes CP violation in B-meson decays as well as the main experiments that have led to our current knowledge of mass-squared differences and mixing angles in neutrino physics. Exploring a new era in particle physics, this edition discusses one of the most recent and exciting breakthroughs—the discovery of a boson with properties consistent with those of the Standard Model Higgs boson. It also updates many other topics, including jet algorithms, lattice QCD, effective Lagrangians, and three-generation quark mixing and the CKM matrix. New to the Fourth Edition New chapter on CP violation and oscillations in mesonic and neutrino systems New section on three-generation quark mixing and the CKM matrix Improved discussion of two-jet cross section in electron-positron annihilation New section on jet algorithms Recent lattice QCD calculations with dynamical fermions New section on effective Lagrangians for spontaneously broken chiral symmetry, including the three-flavor extension, meson mass relations, and chiral perturbation theory Update of asymptotic freedom Discussion of the historic discovery of a Higgs-like boson The authors discuss the main conceptual points of the theories, detail many practical calculations of physical quantities from first principles, and compare these quantitative predictions with experimental results, helping readers improve both their calculation skills and physical insight.
Publisher: CRC Press
ISBN: 1466513071
Category : Science
Languages : en
Pages : 524
Book Description
Volume 2 of this revised and updated edition provides an accessible and practical introduction to the two non-Abelian quantum gauge field theories of the Standard Model of particle physics: quantum chromodynamics (QCD) and the Glashow-Salam-Weinberg (GSW) electroweak theory. This volume covers much of the experimental progress made in the last ten years. A new chapter on CP violation and oscillation phenomena describes CP violation in B-meson decays as well as the main experiments that have led to our current knowledge of mass-squared differences and mixing angles in neutrino physics. Exploring a new era in particle physics, this edition discusses one of the most recent and exciting breakthroughs—the discovery of a boson with properties consistent with those of the Standard Model Higgs boson. It also updates many other topics, including jet algorithms, lattice QCD, effective Lagrangians, and three-generation quark mixing and the CKM matrix. New to the Fourth Edition New chapter on CP violation and oscillations in mesonic and neutrino systems New section on three-generation quark mixing and the CKM matrix Improved discussion of two-jet cross section in electron-positron annihilation New section on jet algorithms Recent lattice QCD calculations with dynamical fermions New section on effective Lagrangians for spontaneously broken chiral symmetry, including the three-flavor extension, meson mass relations, and chiral perturbation theory Update of asymptotic freedom Discussion of the historic discovery of a Higgs-like boson The authors discuss the main conceptual points of the theories, detail many practical calculations of physical quantities from first principles, and compare these quantitative predictions with experimental results, helping readers improve both their calculation skills and physical insight.
Gauge Theories of the Strong, Weak, and Electromagnetic Interactions
Author: Chris Quigg
Publisher: Princeton University Press
ISBN: 1400848229
Category : Science
Languages : en
Pages : 497
Book Description
A thoroughly revised edition of a landmark textbook on gauge theories and their applications to particle physics This completely revised and updated graduate-level textbook is an ideal introduction to gauge theories and their applications to high-energy particle physics, and takes an in-depth look at two new laws of nature—quantum chromodynamics and the electroweak theory. From quantum electrodynamics through unified theories of the interactions among leptons and quarks, Chris Quigg examines the logic and structure behind gauge theories and the experimental underpinnings of today's theories. Quigg emphasizes how we know what we know, and in the era of the Large Hadron Collider, his insightful survey of the standard model and the next great questions for particle physics makes for compelling reading. The brand-new edition shows how the electroweak theory developed in conversation with experiment. Featuring a wide-ranging treatment of electroweak symmetry breaking, the physics of the Higgs boson, and the importance of the 1-TeV scale, the book moves beyond established knowledge and investigates the path toward unified theories of strong, weak, and electromagnetic interactions. Explicit calculations and diverse exercises allow readers to derive the consequences of these theories. Extensive annotated bibliographies accompany each chapter, amplify points of conceptual or technical interest, introduce further applications, and lead readers to the research literature. Students and seasoned practitioners will profit from the text's current insights, and specialists wishing to understand gauge theories will find the book an ideal reference for self-study. Brand-new edition of a landmark text introducing gauge theories Consistent attention to how we know what we know Explicit calculations develop concepts and engage with experiment Interesting and diverse problems sharpen skills and ideas Extensive annotated bibliographies
Publisher: Princeton University Press
ISBN: 1400848229
Category : Science
Languages : en
Pages : 497
Book Description
A thoroughly revised edition of a landmark textbook on gauge theories and their applications to particle physics This completely revised and updated graduate-level textbook is an ideal introduction to gauge theories and their applications to high-energy particle physics, and takes an in-depth look at two new laws of nature—quantum chromodynamics and the electroweak theory. From quantum electrodynamics through unified theories of the interactions among leptons and quarks, Chris Quigg examines the logic and structure behind gauge theories and the experimental underpinnings of today's theories. Quigg emphasizes how we know what we know, and in the era of the Large Hadron Collider, his insightful survey of the standard model and the next great questions for particle physics makes for compelling reading. The brand-new edition shows how the electroweak theory developed in conversation with experiment. Featuring a wide-ranging treatment of electroweak symmetry breaking, the physics of the Higgs boson, and the importance of the 1-TeV scale, the book moves beyond established knowledge and investigates the path toward unified theories of strong, weak, and electromagnetic interactions. Explicit calculations and diverse exercises allow readers to derive the consequences of these theories. Extensive annotated bibliographies accompany each chapter, amplify points of conceptual or technical interest, introduce further applications, and lead readers to the research literature. Students and seasoned practitioners will profit from the text's current insights, and specialists wishing to understand gauge theories will find the book an ideal reference for self-study. Brand-new edition of a landmark text introducing gauge theories Consistent attention to how we know what we know Explicit calculations develop concepts and engage with experiment Interesting and diverse problems sharpen skills and ideas Extensive annotated bibliographies
Gauge Theories in Particle Physics, 40th Anniversary Edition: A Practical Introduction, Volume 2
Author: Ian J R Aitchison
Publisher: CRC Press
ISBN: 1040012825
Category : Science
Languages : en
Pages : 470
Book Description
The fifth edition of this well-established, highly regarded two-volume set continues to provide a fundamental introduction to advanced particle physics while incorporating substantial new experimental results, especially in the areas of Higgs and top sector physics, as well as CP violation and neutrino oscillations. It offers an accessible and practical introduction to the three gauge theories comprising the Standard Model of particle physics: quantum electrodynamics (QED), quantum chromodynamics (QCD), and the Glashow-Salam-Weinberg (GSW) electroweak theory. Volume 2 of this updated edition covers the two non-Abelian gauge theories of QCD and the GSW theory. A distinctive feature is the extended treatment of two crucial theoretical tools: spontaneous symmetry breaking and the renormalization group. The underlying physics of these is elucidated by parallel discussions of examples from condensed matter systems: superfluidity and superconductivity, and critical phenomena. This new edition includes updates to jet algorithms, lattice field theory, CP violation and the CKM matrix, and neutrino physics. New to the fifth edition: Tests of the Standard Model in the Higgs and top quark sectors The naturalness problem and responses to it going beyond the Standard Model The Standard Model as an effective field theory Each volume should serve as a valuable handbook for students and researchers in advanced particle physics looking for an accessible introduction to the Standard Model of particle physics.
Publisher: CRC Press
ISBN: 1040012825
Category : Science
Languages : en
Pages : 470
Book Description
The fifth edition of this well-established, highly regarded two-volume set continues to provide a fundamental introduction to advanced particle physics while incorporating substantial new experimental results, especially in the areas of Higgs and top sector physics, as well as CP violation and neutrino oscillations. It offers an accessible and practical introduction to the three gauge theories comprising the Standard Model of particle physics: quantum electrodynamics (QED), quantum chromodynamics (QCD), and the Glashow-Salam-Weinberg (GSW) electroweak theory. Volume 2 of this updated edition covers the two non-Abelian gauge theories of QCD and the GSW theory. A distinctive feature is the extended treatment of two crucial theoretical tools: spontaneous symmetry breaking and the renormalization group. The underlying physics of these is elucidated by parallel discussions of examples from condensed matter systems: superfluidity and superconductivity, and critical phenomena. This new edition includes updates to jet algorithms, lattice field theory, CP violation and the CKM matrix, and neutrino physics. New to the fifth edition: Tests of the Standard Model in the Higgs and top quark sectors The naturalness problem and responses to it going beyond the Standard Model The Standard Model as an effective field theory Each volume should serve as a valuable handbook for students and researchers in advanced particle physics looking for an accessible introduction to the Standard Model of particle physics.
Gauge Theories in Particle Physics: A Practical Introduction
Author: Ian J R Aitchison
Publisher: CRC Press
ISBN: 1466512997
Category : Science
Languages : en
Pages : 456
Book Description
Volume 1 of this revised and updated edition provides an accessible and practical introduction to the first gauge theory included in the Standard Model of particle physics: quantum electrodynamics (QED). The book includes self-contained presentations of electromagnetism as a gauge theory as well as relativistic quantum mechanics. It provides a unique elementary introduction to quantum field theory, establishing the essentials of the formal and conceptual framework upon which the subsequent development of the three gauge theories is based. The text also describes tree-level calculations of physical processes in QED and introduces ideas of renormalization in the context of one-loop radiative corrections for QED. New to the Fourth Edition New chapter on Lorentz transformations and discrete symmetries in relativistic quantum mechanics, with physical applications Introduction of Majorana fermions at an early stage, making the material suitable for a first course in relativistic quantum mechanics Discrete symmetries in quantum field theory Updates on nucleon structure functions and the status of QED The authors discuss the main conceptual points of the theory, detail many practical calculations of physical quantities from first principles, and compare these quantitative predictions with experimental results, helping readers improve both their calculation skills and physical insight.
Publisher: CRC Press
ISBN: 1466512997
Category : Science
Languages : en
Pages : 456
Book Description
Volume 1 of this revised and updated edition provides an accessible and practical introduction to the first gauge theory included in the Standard Model of particle physics: quantum electrodynamics (QED). The book includes self-contained presentations of electromagnetism as a gauge theory as well as relativistic quantum mechanics. It provides a unique elementary introduction to quantum field theory, establishing the essentials of the formal and conceptual framework upon which the subsequent development of the three gauge theories is based. The text also describes tree-level calculations of physical processes in QED and introduces ideas of renormalization in the context of one-loop radiative corrections for QED. New to the Fourth Edition New chapter on Lorentz transformations and discrete symmetries in relativistic quantum mechanics, with physical applications Introduction of Majorana fermions at an early stage, making the material suitable for a first course in relativistic quantum mechanics Discrete symmetries in quantum field theory Updates on nucleon structure functions and the status of QED The authors discuss the main conceptual points of the theory, detail many practical calculations of physical quantities from first principles, and compare these quantitative predictions with experimental results, helping readers improve both their calculation skills and physical insight.
Geometrodynamics of Gauge Fields
Author: Eckehard W. Mielke
Publisher: Springer
ISBN: 3319297341
Category : Science
Languages : en
Pages : 377
Book Description
This monograph aims to provide a unified, geometrical foundation of gauge theories of elementary particle physics. The underlying geometrical structure is unfolded in a coordinate-free manner via the modern mathematical notions of fibre bundles and exterior forms. Topics such as the dynamics of Yang-Mills theories, instanton solutions and topological invariants are included. By transferring these concepts to local space-time symmetries, generalizations of Einstein's theory of gravity arise in a Riemann-Cartan space with curvature and torsion. It provides the framework in which the (broken) Poincaré gauge theory, the Rainich geometrization of the Einstein-Maxwell system, and higher-dimensional, non-abelian Kaluza-Klein theories are developed. Since the discovery of the Higgs boson, concepts of spontaneous symmetry breaking in gravity have come again into focus, and, in this revised edition, these will be exposed in geometric terms. Quantizing gravity remains an open issue: formulating it as a de Sitter type gauge theory in the spirit of Yang-Mills, some new progress in its topological form is presented. After symmetry breaking, Einstein’s standard general relativity with cosmological constant emerges as a classical background. The geometrical structure of BRST quantization with non-propagating topological ghosts is developed in some detail.
Publisher: Springer
ISBN: 3319297341
Category : Science
Languages : en
Pages : 377
Book Description
This monograph aims to provide a unified, geometrical foundation of gauge theories of elementary particle physics. The underlying geometrical structure is unfolded in a coordinate-free manner via the modern mathematical notions of fibre bundles and exterior forms. Topics such as the dynamics of Yang-Mills theories, instanton solutions and topological invariants are included. By transferring these concepts to local space-time symmetries, generalizations of Einstein's theory of gravity arise in a Riemann-Cartan space with curvature and torsion. It provides the framework in which the (broken) Poincaré gauge theory, the Rainich geometrization of the Einstein-Maxwell system, and higher-dimensional, non-abelian Kaluza-Klein theories are developed. Since the discovery of the Higgs boson, concepts of spontaneous symmetry breaking in gravity have come again into focus, and, in this revised edition, these will be exposed in geometric terms. Quantizing gravity remains an open issue: formulating it as a de Sitter type gauge theory in the spirit of Yang-Mills, some new progress in its topological form is presented. After symmetry breaking, Einstein’s standard general relativity with cosmological constant emerges as a classical background. The geometrical structure of BRST quantization with non-propagating topological ghosts is developed in some detail.
An Introduction to Gauge Theories and Modern Particle Physics
Author: Elliot Leader
Publisher: Cambridge University Press
ISBN: 9780521499514
Category : Science
Languages : en
Pages : 468
Book Description
A comprehensive treatment of modern theoretical and experimental particle physics, in two volumes.
Publisher: Cambridge University Press
ISBN: 9780521499514
Category : Science
Languages : en
Pages : 468
Book Description
A comprehensive treatment of modern theoretical and experimental particle physics, in two volumes.
Gauge/Gravity Duality
Author: Martin Ammon
Publisher: Cambridge University Press
ISBN: 1107010349
Category : Juvenile Nonfiction
Languages : en
Pages : 549
Book Description
The first textbook on this important topic, for graduate students and researchers in particle and condensed matter physics.
Publisher: Cambridge University Press
ISBN: 1107010349
Category : Juvenile Nonfiction
Languages : en
Pages : 549
Book Description
The first textbook on this important topic, for graduate students and researchers in particle and condensed matter physics.
Electroweak Interactions
Author: Peter Renton
Publisher: Cambridge University Press
ISBN: 9780521366922
Category : Science
Languages : en
Pages : 614
Book Description
A graduate-level description of how the theory of electroweak interactions, or so-called "Standard Model" unifies the weak and electromagnetic forces of nature in high energy physics.
Publisher: Cambridge University Press
ISBN: 9780521366922
Category : Science
Languages : en
Pages : 614
Book Description
A graduate-level description of how the theory of electroweak interactions, or so-called "Standard Model" unifies the weak and electromagnetic forces of nature in high energy physics.