Dopants and Defects in Semiconductors

Dopants and Defects in Semiconductors PDF Author: Matthew D. McCluskey
Publisher: CRC Press
ISBN: 1439831521
Category : Science
Languages : en
Pages : 392

Get Book Here

Book Description
Dopants and Defects in Semiconductors covers the theory, experimentation, and identification of impurities, dopants, and intrinsic defects in semiconductors. The book fills a crucial gap between solid-state physics and more specialized course texts. The authors first present introductory concepts, including basic semiconductor theory, defect classifications, crystal growth, and doping. They then explain electrical, vibrational, optical, and thermal properties. Moving on to characterization approaches, the text concludes with chapters on the measurement of electrical properties, optical spectroscopy, particle-beam methods, and microscopy. By treating dopants and defects in semiconductors as a unified subject, this book helps define the field and prepares students for work in technologically important areas. It provides students with a solid foundation in both experimental methods and the theory of defects in semiconductors.

Dopants and Defects in Semiconductors

Dopants and Defects in Semiconductors PDF Author: Matthew D. McCluskey
Publisher: CRC Press
ISBN: 1439831521
Category : Science
Languages : en
Pages : 392

Get Book Here

Book Description
Dopants and Defects in Semiconductors covers the theory, experimentation, and identification of impurities, dopants, and intrinsic defects in semiconductors. The book fills a crucial gap between solid-state physics and more specialized course texts. The authors first present introductory concepts, including basic semiconductor theory, defect classifications, crystal growth, and doping. They then explain electrical, vibrational, optical, and thermal properties. Moving on to characterization approaches, the text concludes with chapters on the measurement of electrical properties, optical spectroscopy, particle-beam methods, and microscopy. By treating dopants and defects in semiconductors as a unified subject, this book helps define the field and prepares students for work in technologically important areas. It provides students with a solid foundation in both experimental methods and the theory of defects in semiconductors.

Dopants and Defects in Semiconductors, Second Edition

Dopants and Defects in Semiconductors, Second Edition PDF Author: Matthew D. McCluskey
Publisher: CRC Press
ISBN: 1351977970
Category : Science
Languages : en
Pages : 475

Get Book Here

Book Description
Praise for the First Edition "The book goes beyond the usual textbook in that it provides more specific examples of real-world defect physics ... an easy reading, broad introductory overview of the field" ?Materials Today "... well written, with clear, lucid explanations ..." ?Chemistry World This revised edition provides the most complete, up-to-date coverage of the fundamental knowledge of semiconductors, including a new chapter that expands on the latest technology and applications of semiconductors. In addition to inclusion of additional chapter problems and worked examples, it provides more detail on solid-state lighting (LEDs and laser diodes). The authors have achieved a unified overview of dopants and defects, offering a solid foundation for experimental methods and the theory of defects in semiconductors. Matthew D. McCluskey is a professor in the Department of Physics and Astronomy and Materials Science Program at Washington State University (WSU), Pullman, Washington. He received a Physics Ph.D. from the University of California (UC), Berkeley. Eugene E. Haller is a professor emeritus at the University of California, Berkeley, and a member of the National Academy of Engineering. He received a Ph.D. in Solid State and Applied Physics from the University of Basel, Switzerland.

Defects in Semiconductors

Defects in Semiconductors PDF Author:
Publisher: Academic Press
ISBN: 0128019409
Category : Technology & Engineering
Languages : en
Pages : 458

Get Book Here

Book Description
This volume, number 91 in the Semiconductor and Semimetals series, focuses on defects in semiconductors. Defects in semiconductors help to explain several phenomena, from diffusion to getter, and to draw theories on materials' behavior in response to electrical or mechanical fields. The volume includes chapters focusing specifically on electron and proton irradiation of silicon, point defects in zinc oxide and gallium nitride, ion implantation defects and shallow junctions in silicon and germanium, and much more. It will help support students and scientists in their experimental and theoretical paths. - Expert contributors - Reviews of the most important recent literature - Clear illustrations - A broad view, including examination of defects in different semiconductors

Theory of Defects in Semiconductors

Theory of Defects in Semiconductors PDF Author: David A. Drabold
Publisher: Springer Science & Business Media
ISBN:
Category : Science
Languages : en
Pages : 320

Get Book Here

Book Description
Semiconductor science and technology is the art of defect engineering. The theoretical modeling of defects has improved dramatically over the past decade. These tools are now applied to a wide range of materials issues: quantum dots, buckyballs, spintronics, interfaces, amorphous systems, and many others. This volume presents a coherent and detailed description of the field, and brings together leaders in theoretical research. Today's state-of-the-art, as well as tomorrow’s tools, are discussed: the supercell-pseudopotential method, the GW formalism,Quantum Monte Carlo, learn-on-the-fly molecular dynamics, finite-temperature treatments, etc. A wealth of applications are included, from point defects to wafer bonding or the propagation of dislocation.

Dopants and Defects in Semiconductors

Dopants and Defects in Semiconductors PDF Author: Matthew D. McCluskey
Publisher: CRC Press
ISBN: 143983153X
Category : Science
Languages : en
Pages : 372

Get Book Here

Book Description
Dopants and Defects in Semiconductors covers the theory, experimentation, and identification of impurities, dopants, and intrinsic defects in semiconductors. The book fills a crucial gap between solid-state physics and more specialized course texts.The authors first present introductory concepts, including basic semiconductor theory, defect classif

III-Nitride Semiconductors

III-Nitride Semiconductors PDF Author: M.O. Manasreh
Publisher: Elsevier
ISBN: 0080534449
Category : Science
Languages : en
Pages : 463

Get Book Here

Book Description
Research advances in III-nitride semiconductor materials and device have led to an exponential increase in activity directed towards electronic and optoelectronic applications. There is also great scientific interest in this class of materials because they appear to form the first semiconductor system in which extended defects do not severely affect the optical properties of devices. The volume consists of chapters written by a number of leading researchers in nitride materials and device technology with the emphasis on the dopants incorporations, impurities identifications, defects engineering, defects characterization, ion implantation, irradiation-induced defects, residual stress, structural defects and phonon confinement. This unique volume provides a comprehensive review and introduction of defects and structural properties of GaN and related compounds for newcomers to the field and stimulus to further advances for experienced researchers. Given the current level of interest and research activity directed towards nitride materials and devices, the publication of the volume is particularly timely. Early pioneering work by Pankove and co-workers in the 1970s yielded a metal-insulator-semiconductor GaN light-emitting diode (LED), but the difficulty of producing p-type GaN precluded much further effort. The current level of activity in nitride semiconductors was inspired largely by the results of Akasaki and co-workers and of Nakamura and co-workers in the late 1980s and early 1990s in the development of p-type doping in GaN and the demonstration of nitride-based LEDs at visible wavelengths. These advances were followed by the successful fabrication and commercialization of nitride blue laser diodes by Nakamura et al at Nichia. The chapters contained in this volume constitutes a mere sampling of the broad range of research on nitride semiconductor materials and defect issues currently being pursued in academic, government, and industrial laboratories worldwide.

Doping in III-V Semiconductors

Doping in III-V Semiconductors PDF Author: E. Fred Schubert
Publisher: E. Fred Schubert
ISBN: 0986382639
Category : Science
Languages : en
Pages : 624

Get Book Here

Book Description
This is the first book to describe thoroughly the many facets of doping in compound semiconductors. Equal emphasis is given to the fundamental materials physics and to the technological aspects of doping. The author describes various doping techniques, including doping during epitaxial growth, doping by implantation, and doping by diffusion. The key characteristics of all dopants that have been employed in III-V semiconductors are discussed. In addition, general characteristics of dopants are analyzed, including the electrical activity, saturation, amphotericity, autocompensation, and maximum attainable dopant concentration. Redistribution effects are important in semiconductor microstructures. Linear and non-linear diffusion, different microscopic diffusion mechanisms, surface segregation, surface drift, surface migration, impurity-induced disordering, and the respective physical driving mechanisms are illustrated. Topics related to basic impurity theory include the hydrogenic model for shallow impurities, linear screening, density of states, classical and quantum statistics, the law of mass action, as well as many analytic approximations for the Fermi-Dirac integral for three-, two- and one dimensional systems. The timely topic of highly doped semiconductors, including band tails, impurity bands, bandgap renormalization, the Mott transition, and the Burstein-Moss shift, is discussed as well. Doping is essential in many semiconductor heterostructures including high-mobility selectively doped heterostructures, quantum well and quantum barrier structures, doping superlattice structures and d-doping structures. Technologically important deep levels are summarized, including Fe, Cr, and the DX-center, the EL2 defect, and rare-earth impurities. The properties of deep levels are presented phenomenologically, including emission, capture, Shockley-Read recombination, the Poole-Frenkel effect, lattice relaxation, and other effects. The final chapter is dedicated to the experimental characterization of impurities. This book will be of interest to graduate students, researchers and development engineers in the fields of electrical engineering, materials science, physics, and chemistry working on semiconductors. The book may also be used as a text for graduate courses in electrical engineering and materials science.

Point Defects in Semiconductors and Insulators

Point Defects in Semiconductors and Insulators PDF Author: Johann-Martin Spaeth
Publisher: Springer Science & Business Media
ISBN: 9783540426950
Category : Technology & Engineering
Languages : en
Pages : 508

Get Book Here

Book Description
The precedent book with the title "Structural Analysis of Point Defects in Solids: An introduction to multiple magnetic resonance spectroscopy" ap peared about 10 years ago. Since then a very active development has oc curred both with respect to the experimental methods and the theoretical interpretation of the experimental results. It would therefore not have been sufficient to simply publish a second edition of the precedent book with cor rections and a few additions. Furthermore the application of the multiple magnetic resonance methods has more and more shifted towards materials science and represents one of the important methods of materials analysis. Multiple magnetic resonances are used less now for "fundamental" studies in solid state physics. Therefore a more "pedestrian" access to the meth ods is called for to help the materials scientist to use them or to appreciate results obtained by using these methods. We have kept the two introduc tory chapters on conventional electron paramagnetic resonance (EPR) of the precedent book which are the base for the multiple resonance methods. The chapter on optical detection of EPR (ODEPR) was supplemented by sections on the structural information one can get from "forbidden" transitions as well as on spatial correlations between defects in the so-called "cross relaxation spectroscopy". High-field ODEPR/ENDOR was also added. The chapter on stationary electron nuclear double resonance (ENDOR) was supplemented by the method of stochastic END OR developed a few years ago in Paderborn which is now also commercially available.

Defects In Functional Materials

Defects In Functional Materials PDF Author: Chi-chung Francis Ling
Publisher: World Scientific
ISBN: 9811203180
Category : Science
Languages : en
Pages : 338

Get Book Here

Book Description
The research of functional materials has attracted extensive attention in recent years, and its advancement nitrifies the developments of modern sciences and technologies like green sciences and energy, aerospace, medical and health, telecommunications, and information technology. The present book aims to summarize the research activities carried out in recent years devoting to the understanding of the physics and chemistry of how the defects play a role in the electrical, optical and magnetic properties and the applications of the different functional materials in the fields of magnetism, optoelectronic, and photovoltaic etc.

The Materials Science of Semiconductors

The Materials Science of Semiconductors PDF Author: Angus Rockett
Publisher: Springer Science & Business Media
ISBN: 0387686509
Category : Technology & Engineering
Languages : en
Pages : 629

Get Book Here

Book Description
This book describes semiconductors from a materials science perspective rather than from condensed matter physics or electrical engineering viewpoints. It includes discussion of current approaches to organic materials for electronic devices. It further describes the fundamental aspects of thin film nucleation and growth, and the most common physical and chemical vapor deposition techniques. Examples of the application of the concepts in each chapter to specific problems or situations are included, along with recommended readings and homework problems.