Discrete Particle Simulation of Gas Solid Flow of Particle Mixtures in Gas Fluidization

Discrete Particle Simulation of Gas Solid Flow of Particle Mixtures in Gas Fluidization PDF Author: Yuqing Feng (Ph. D.)
Publisher:
ISBN:
Category : Fluidization
Languages : en
Pages : 522

Get Book Here

Book Description

Discrete Particle Simulation of Gas Solid Flow of Particle Mixtures in Gas Fluidization

Discrete Particle Simulation of Gas Solid Flow of Particle Mixtures in Gas Fluidization PDF Author: Yuqing Feng (Ph. D.)
Publisher:
ISBN:
Category : Fluidization
Languages : en
Pages : 522

Get Book Here

Book Description


Fundamentals of Gas Particle Flow

Fundamentals of Gas Particle Flow PDF Author: G Rudinger
Publisher: Elsevier
ISBN: 0444601821
Category : Science
Languages : en
Pages : 157

Get Book Here

Book Description
Fundamentals of Gas-Particle Flow is an edited, updated, and expanded version of a number of lectures presented on the “Gas-Solid Suspensions course organized by the von Karman Institute for Fluid Dynamics. Materials presented in this book are mostly analytical in nature, but some experimental techniques are included. The book focuses on relaxation processes, including the viscous drag of single particles, drag in gas-particles flow, gas-particle heat transfer, equilibrium, and frozen flow. It also discusses the dynamics of single particles, such as particles in an arbitrary flow, in a rotating gas, in a Prandtl-Meyer expansion, and in an oscillating flow. The remaining chapters of the book deal with the thermodynamics of gas-particle mixtures, steady flow through ducts, pressure waves, gas-particle jets, boundary layer, and momentum transfer. The experimental techniques included in this book present the powder feeders, the instrumentation on particle flow rate, velocity, concentration and temperature, and the measurement of the particle drag coefficient in a shock tube.

Discrete Particle Simulation of Packing, Fluidization and Heat Transfer of Ellipsoids

Discrete Particle Simulation of Packing, Fluidization and Heat Transfer of Ellipsoids PDF Author: Jieqing Gan
Publisher:
ISBN:
Category :
Languages : en
Pages : 590

Get Book Here

Book Description
Packing, fluidization and heat transfer of particles are involved in many industry processes. Many variables affect these processes, among which, particle size and shape are of most importance. Understanding its fundamentals is of paramount importance to the formulation of strategies for process development and control. To consider the effect of particle shape, ellipsoids are often used as they can represent particle shapes from flat to elongated. Discrete element method (DEM) is usually used to study the packing of fine particles. The combined approach of computational fluid dynamics (CFD) and DEM is favourable to study the gas fluidization of fine powders. Base on this approach, heat transfer behaviour in fluidized beds can then be considered. This thesis represents an effort in this area and four major components are included. The effects of particle size and shape on packing structure of fine ellipsoids are investigated. The results indicate that the porosity-aspect ratio curve shows a "W" shape for coarse particles, but the cusp at aspect ratio of 1.0 varies from convex to concave when particle size decreases. A correlation between the porosity, particle size (or force ratio) and aspect ratio is established. The results show that particles become less ordered when particle size becomes smaller. The contact and force network, force transmission and probability distribution are also investigated. With the introduction gas flow, the effects of particle size and shape on flow behaviour in fluidization of fine ellipsoids are investigated. At the macro-scale, "chain phenomenon", as a special shape of agglomerates, exists in expanded and fluidized beds for fine prolate spheroids. In expanded beds, there is an obvious pressure drop fluctuation before pressure drop levels off at bed weight per unit area, and when the aspect ratio deviates from 1.0, the fluctuation amplitude becomes higher. The correlation between minimum fluidization velocity and particle size and aspect ratio has been established. At the micro-scale, it shows that fine particles show vortex flow for different particle shapes in fluidized beds. Flat or elongate particles tend to flow with small project area in the flow direction of fluid to reduce flow resistance. Focus is then given to the formation process of expanded bed with different particle shapes. Further, the effect of particle shape on heat transfer in packed and bubbling fluidized beds is examined. Conductive heat transfer models for ellipsoids are established. It indicates that in packed beds with stagnant fluid, ellipsoids exhibit larger effective thermal conductivity than spheres. In fluidized beds, ellipsoids have lower convective heat fluxes but higher conductive heat exchange rates than spheres. Prolate spheroids have larger convective heat transfer coefficient than those of spheres and oblate spheroids. Finally, to improve the computing efficiency and realize large scale simulation, the GPU-based DEM is developed. The performances of DEM on GPU and CPU are compared, and two different GPU parallel methods are compared. To realize industry scale simulation, the GPU-based DEM model considers arbitrary wall geometry and complex wall movements. Lastly, multiple GPUs technology is used for further acceleration and to deal with large granular system.

Multiphase Flow and Fluidization

Multiphase Flow and Fluidization PDF Author: Dimitri Gidaspow
Publisher: Elsevier
ISBN: 0080512267
Category : Science
Languages : en
Pages : 489

Get Book Here

Book Description
Useful as a reference for engineers in industry and as an advanced level text for graduate engineering students, Multiphase Flow and Fluidization takes the reader beyond the theoretical to demonstrate how multiphase flow equations can be used to provide applied, practical, predictive solutions to industrial fluidization problems. Written to help advance progress in the emerging science of multiphase flow, this book begins with the development of the conservation laws and moves on through kinetic theory, clarifying many physical concepts (such as particulate viscosity and solids pressure) and introducing the new dependent variable--the volume fraction of the dispersed phase. Exercises at the end of each chapterare provided for further study and lead into applications not covered in the text itself. Treats fluidization as a branch of transport phenomena Demonstrates how to do transient, multidimensional simulation of multiphase processes The first book to apply kinetic theory to flow of particulates Is the only book to discuss numerical stability of multiphase equations and whether or not such equations are well-posed Explains the origin of bubbles and the concept of critical granular flow Presents clearly written exercises at the end of each chapter to facilitate understanding and further study

Principles of Gas-Solid Flows

Principles of Gas-Solid Flows PDF Author: Liang-Shih Fan
Publisher: Cambridge University Press
ISBN: 0521581486
Category : Science
Languages : en
Pages : 579

Get Book Here

Book Description
Discusses fundamental principles of gas-solid flows and their applications, and includes numerous examples and homework problems.

Coupled CFD-DEM Modeling

Coupled CFD-DEM Modeling PDF Author: Hamid Reza Norouzi
Publisher: John Wiley & Sons
ISBN: 1119005256
Category : Technology & Engineering
Languages : en
Pages : 432

Get Book Here

Book Description
Discusses the CFD-DEM method of modeling which combines both the Discrete Element Method and Computational Fluid Dynamics to simulate fluid-particle interactions. Deals with both theoretical and practical concepts of CFD-DEM, its numerical implementation accompanied by a hands-on numerical code in FORTRAN Gives examples of industrial applications

Fast Fluidization

Fast Fluidization PDF Author:
Publisher: Academic Press
ISBN: 0080565670
Category : Technology & Engineering
Languages : en
Pages : 453

Get Book Here

Book Description
Over the last decade, circulating fluidization or fast fluidization has developed rapidly, superseding standard bubbling fluidization in many applications; for example, fast fluidization provides a better means forcontrolling emissions from the combustion of high-sulfur fuels and excels when used in boilers in steam plant and power stations. China initiated the study of fast fluidization in the early 1970s. Focusing on the substantial research cultivated in that country, with Kwauk at the leading edge, this latest volume in the Advances in Chemical Engineering Series is written in the context of the international state of the art and addresses some of the most vital issues surrounding this fluidization method."

Fluidized-Bed Reactors: Processes and Operating Conditions

Fluidized-Bed Reactors: Processes and Operating Conditions PDF Author: John G. Yates
Publisher: Springer
ISBN: 3319395939
Category : Science
Languages : en
Pages : 214

Get Book Here

Book Description
The fluidized-bed reactor is the centerpiece of industrial fluidization processes. This book focuses on the design and operation of fluidized beds in many different industrial processes, emphasizing the rationale for choosing fluidized beds for each particular process. The book starts with a brief history of fluidization from its inception in the 1940’s. The authors present both the fluid dynamics of gas-solid fluidized beds and the extensive experimental studies of operating systems and they set them in the context of operating processes that use fluid-bed reactors. Chemical engineering students and postdocs as well as practicing engineers will find great interest in this book.

Essentials of Fluidization Technology

Essentials of Fluidization Technology PDF Author: John R. Grace
Publisher: John Wiley & Sons
ISBN: 3527340645
Category : Technology & Engineering
Languages : en
Pages : 626

Get Book Here

Book Description
A concise and clear treatment of the fundamentals of fluidization, with a view to its applications in the process and energy industries.

Gas-Liquid-Solid Fluidization Engineering

Gas-Liquid-Solid Fluidization Engineering PDF Author: Liang-Shih Fan
Publisher: Butterworth-Heinemann
ISBN: 1483289516
Category : Technology & Engineering
Languages : en
Pages : 784

Get Book Here

Book Description
This book provides a comprehensive mechanistic interpretation of the transport phenomena involved in various basic modes of gas-liquid-solid fluidization. These modes include, for example, those for three-phase fluidized beds, slurry columns, turbulent contact absorbers, and three-phase fluidized beds, slurry columns, turbulent contact absorbers, and three-phase transport. It summarizes the empirical correlations useful for predicting transport properties for each mode of of operation.Gas-Liquid-Solid Fluidization Engineering provides a comprehensive account of the state-of-the-art applications of the three-phase fluidization systems that are important in both small-and large-scale operations. These applications include fermentation,biological wastewater treatment, flue gas desulfurization and particulates removal, and resid hydrotreating. This book highlights the industrial implications of these applications. In addition, it discusses information gaps and future directions forresearch in this field.