Differential Geometry and Its Visualization

Differential Geometry and Its Visualization PDF Author: Eberhard Malkowsky
Publisher: CRC Press
ISBN: 1000926001
Category : Mathematics
Languages : en
Pages : 640

Get Book Here

Book Description
Differential Geometry and Its Visualization is suitable for graduate level courses in differential geometry, serving both students and teachers. It can also be used as a supplementary reference for research in mathematics and the natural and engineering sciences. Differential geometry is the study of geometric objects and their properties using the methods of mathematical analysis. The classical theory of curves and surfaces in three-dimensional Euclidean space is presented in the first three chapters. The abstract and modern topics of tensor algebra, Riemannian spaces and tensor analysis are studied in the last two chapters. A great number of illustrating examples, visualizations and genuine figures created by the authors’ own software are included to support the understanding of the presented concepts and results, and to develop an adequate perception of the shapes of geometric objects, their properties and the relations between them. Features Extensive, full colour visualisations. Numerous exercises. Self-contained and comprehensive treatment of the topic.

Differential Geometry and Its Visualization

Differential Geometry and Its Visualization PDF Author: Eberhard Malkowsky
Publisher: CRC Press
ISBN: 1000926001
Category : Mathematics
Languages : en
Pages : 640

Get Book Here

Book Description
Differential Geometry and Its Visualization is suitable for graduate level courses in differential geometry, serving both students and teachers. It can also be used as a supplementary reference for research in mathematics and the natural and engineering sciences. Differential geometry is the study of geometric objects and their properties using the methods of mathematical analysis. The classical theory of curves and surfaces in three-dimensional Euclidean space is presented in the first three chapters. The abstract and modern topics of tensor algebra, Riemannian spaces and tensor analysis are studied in the last two chapters. A great number of illustrating examples, visualizations and genuine figures created by the authors’ own software are included to support the understanding of the presented concepts and results, and to develop an adequate perception of the shapes of geometric objects, their properties and the relations between them. Features Extensive, full colour visualisations. Numerous exercises. Self-contained and comprehensive treatment of the topic.

Differential Geometry and Its Applications

Differential Geometry and Its Applications PDF Author: John Oprea
Publisher: MAA
ISBN: 9780883857489
Category : Mathematics
Languages : en
Pages : 508

Get Book Here

Book Description
This book studies the differential geometry of surfaces and its relevance to engineering and the sciences.

Elementary Differential Geometry

Elementary Differential Geometry PDF Author: Christian Bär
Publisher: Cambridge University Press
ISBN: 0521896711
Category : Mathematics
Languages : en
Pages : 335

Get Book Here

Book Description
This easy-to-read introduction takes the reader from elementary problems through to current research. Ideal for courses and self-study.

Visual Differential Geometry and Forms

Visual Differential Geometry and Forms PDF Author: Tristan Needham
Publisher: Princeton University Press
ISBN: 0691203709
Category : Mathematics
Languages : en
Pages : 530

Get Book Here

Book Description
An inviting, intuitive, and visual exploration of differential geometry and forms Visual Differential Geometry and Forms fulfills two principal goals. In the first four acts, Tristan Needham puts the geometry back into differential geometry. Using 235 hand-drawn diagrams, Needham deploys Newton’s geometrical methods to provide geometrical explanations of the classical results. In the fifth act, he offers the first undergraduate introduction to differential forms that treats advanced topics in an intuitive and geometrical manner. Unique features of the first four acts include: four distinct geometrical proofs of the fundamentally important Global Gauss-Bonnet theorem, providing a stunning link between local geometry and global topology; a simple, geometrical proof of Gauss’s famous Theorema Egregium; a complete geometrical treatment of the Riemann curvature tensor of an n-manifold; and a detailed geometrical treatment of Einstein’s field equation, describing gravity as curved spacetime (General Relativity), together with its implications for gravitational waves, black holes, and cosmology. The final act elucidates such topics as the unification of all the integral theorems of vector calculus; the elegant reformulation of Maxwell’s equations of electromagnetism in terms of 2-forms; de Rham cohomology; differential geometry via Cartan’s method of moving frames; and the calculation of the Riemann tensor using curvature 2-forms. Six of the seven chapters of Act V can be read completely independently from the rest of the book. Requiring only basic calculus and geometry, Visual Differential Geometry and Forms provocatively rethinks the way this important area of mathematics should be considered and taught.

Differential Geometry and Its Visualization

Differential Geometry and Its Visualization PDF Author: Eberhard Malkowsky
Publisher:
ISBN: 9781003370567
Category : MATHEMATICS
Languages : en
Pages : 0

Get Book Here

Book Description
Differential Geometry and Its Visualization is suitable for graduate level courses in differential geometry, serving both students and teachers. It can also be used as a supplementary reference for research in mathematics and the natural and engineering sciences. Differential geometry is the study of geometric objects and their properties using the methods of mathematical analysis. The classical theory of curves and surfaces in three-dimensional Euclidean space is presented in the first three chapters. The abstract and modern topics of tensor algebra, Riemannian spaces and tensor analysis are studied in the last two chapters. A great number of illustrating examples, visualizations and genuine figures created by the authors' own software are included to support the understanding of the presented concepts and results, and to develop an adequate perception of the shapes of geometric objects, their properties and the relations between them. Features Extensive, full colour visualisations Numerous exercises Self-contained and comprehensive treatment of the topic

Visual Complex Analysis

Visual Complex Analysis PDF Author: Tristan Needham
Publisher: Oxford University Press
ISBN: 9780198534464
Category : Mathematics
Languages : en
Pages : 620

Get Book Here

Book Description
This radical first course on complex analysis brings a beautiful and powerful subject to life by consistently using geometry (not calculation) as the means of explanation. Aimed at undergraduate students in mathematics, physics, and engineering, the book's intuitive explanations, lack of advanced prerequisites, and consciously user-friendly prose style will help students to master the subject more readily than was previously possible. The key to this is the book's use of new geometric arguments in place of the standard calculational ones. These geometric arguments are communicated with the aid of hundreds of diagrams of a standard seldom encountered in mathematical works. A new approach to a classical topic, this work will be of interest to students in mathematics, physics, and engineering, as well as to professionals in these fields.

Elementary Topics in Differential Geometry

Elementary Topics in Differential Geometry PDF Author: J. A. Thorpe
Publisher: Springer Science & Business Media
ISBN: 1461261538
Category : Mathematics
Languages : en
Pages : 263

Get Book Here

Book Description
In the past decade there has been a significant change in the freshman/ sophomore mathematics curriculum as taught at many, if not most, of our colleges. This has been brought about by the introduction of linear algebra into the curriculum at the sophomore level. The advantages of using linear algebra both in the teaching of differential equations and in the teaching of multivariate calculus are by now widely recognized. Several textbooks adopting this point of view are now available and have been widely adopted. Students completing the sophomore year now have a fair preliminary under standing of spaces of many dimensions. It should be apparent that courses on the junior level should draw upon and reinforce the concepts and skills learned during the previous year. Unfortunately, in differential geometry at least, this is usually not the case. Textbooks directed to students at this level generally restrict attention to 2-dimensional surfaces in 3-space rather than to surfaces of arbitrary dimension. Although most of the recent books do use linear algebra, it is only the algebra of ~3. The student's preliminary understanding of higher dimensions is not cultivated.

Introduction to Differential Geometry

Introduction to Differential Geometry PDF Author: Joel W. Robbin
Publisher: Springer Nature
ISBN: 3662643405
Category : Mathematics
Languages : en
Pages : 426

Get Book Here

Book Description
This textbook is suitable for a one semester lecture course on differential geometry for students of mathematics or STEM disciplines with a working knowledge of analysis, linear algebra, complex analysis, and point set topology. The book treats the subject both from an extrinsic and an intrinsic view point. The first chapters give a historical overview of the field and contain an introduction to basic concepts such as manifolds and smooth maps, vector fields and flows, and Lie groups, leading up to the theorem of Frobenius. Subsequent chapters deal with the Levi-Civita connection, geodesics, the Riemann curvature tensor, a proof of the Cartan-Ambrose-Hicks theorem, as well as applications to flat spaces, symmetric spaces, and constant curvature manifolds. Also included are sections about manifolds with nonpositive sectional curvature, the Ricci tensor, the scalar curvature, and the Weyl tensor. An additional chapter goes beyond the scope of a one semester lecture course and deals with subjects such as conjugate points and the Morse index, the injectivity radius, the group of isometries and the Myers-Steenrod theorem, and Donaldson's differential geometric approach to Lie algebra theory.

Mathematical Visualization

Mathematical Visualization PDF Author: H.-C. Hege
Publisher: Springer Science & Business Media
ISBN: 9783540639916
Category : Mathematics
Languages : en
Pages : 422

Get Book Here

Book Description
Mathematical Visualization is a young new discipline. It offers efficient visualization tools to the classical subjects of mathematics, and applies mathematical techniques to problems in computer graphics and scientific visualization. Originally, it started in the interdisciplinary area of differential geometry, numerical mathematics, and computer graphics. In recent years, the methods developed have found important applications. The current volume is the quintessence of an international workshop in September 1997 in Berlin, focusing on recent developments in this emerging area. Experts present selected research work on new algorithms for visualization problems, describe the application and experiments in geometry, and develop new numerical or computer graphical techniques.

Applied Differential Geometry

Applied Differential Geometry PDF Author: William L. Burke
Publisher: Cambridge University Press
ISBN: 9780521269292
Category : Mathematics
Languages : en
Pages : 440

Get Book Here

Book Description
This is a self-contained introductory textbook on the calculus of differential forms and modern differential geometry. The intended audience is physicists, so the author emphasises applications and geometrical reasoning in order to give results and concepts a precise but intuitive meaning without getting bogged down in analysis. The large number of diagrams helps elucidate the fundamental ideas. Mathematical topics covered include differentiable manifolds, differential forms and twisted forms, the Hodge star operator, exterior differential systems and symplectic geometry. All of the mathematics is motivated and illustrated by useful physical examples.