Author: Aravind Asthagiri
Publisher: Royal Society of Chemistry
ISBN: 1849734518
Category : Science
Languages : en
Pages : 277
Book Description
This book presents a comprehensive review of the methods and approaches being adopted to push forward the boundaries of computational catalysis.
Computational Catalysis
Author: Aravind Asthagiri
Publisher: Royal Society of Chemistry
ISBN: 1849734518
Category : Science
Languages : en
Pages : 277
Book Description
This book presents a comprehensive review of the methods and approaches being adopted to push forward the boundaries of computational catalysis.
Publisher: Royal Society of Chemistry
ISBN: 1849734518
Category : Science
Languages : en
Pages : 277
Book Description
This book presents a comprehensive review of the methods and approaches being adopted to push forward the boundaries of computational catalysis.
Computational Materials, Chemistry, and Biochemistry: From Bold Initiatives to the Last Mile
Author: Sadasivan Shankar
Publisher: Springer Nature
ISBN: 3030187780
Category : Technology & Engineering
Languages : en
Pages : 1344
Book Description
This book provides a broad and nuanced overview of the achievements and legacy of Professor William (“Bill”) Goddard in the field of computational materials and molecular science. Leading researchers from around the globe discuss Goddard’s work and its lasting impacts, which can be seen in today’s cutting-edge chemistry, materials science, and biology techniques. Each section of the book closes with an outline of the prospects for future developments. In the course of a career spanning more than 50 years, Goddard’s seminal work has led to dramatic advances in a diverse range of science and engineering fields. Presenting scientific essays and reflections by students, postdoctoral associates, collaborators and colleagues, the book describes the contributions of one of the world’s greatest materials and molecular scientists in the context of theory, experimentation, and applications, and examines his legacy in each area, from conceptualization (the first mile) to developments and extensions aimed at applications, and lastly to de novo design (the last mile). Goddard’s passion for science, his insights, and his ability to actively engage with his collaborators in bold initiatives is a model for us all. As he enters his second half-century of scientific research and education, this book inspires future generations of students and researchers to employ and extend these powerful techniques and insights to tackle today’s critical problems in biology, chemistry, and materials. Examples highlighted in the book include new materials for photocatalysts to convert water and CO2 into fuels, novel catalysts for the highly selective and active catalysis of alkanes to valuable organics, simulating the chemistry in film growth to develop two-dimensional functional films, and predicting ligand–protein binding and activation to enable the design of targeted drugs with minimal side effects.
Publisher: Springer Nature
ISBN: 3030187780
Category : Technology & Engineering
Languages : en
Pages : 1344
Book Description
This book provides a broad and nuanced overview of the achievements and legacy of Professor William (“Bill”) Goddard in the field of computational materials and molecular science. Leading researchers from around the globe discuss Goddard’s work and its lasting impacts, which can be seen in today’s cutting-edge chemistry, materials science, and biology techniques. Each section of the book closes with an outline of the prospects for future developments. In the course of a career spanning more than 50 years, Goddard’s seminal work has led to dramatic advances in a diverse range of science and engineering fields. Presenting scientific essays and reflections by students, postdoctoral associates, collaborators and colleagues, the book describes the contributions of one of the world’s greatest materials and molecular scientists in the context of theory, experimentation, and applications, and examines his legacy in each area, from conceptualization (the first mile) to developments and extensions aimed at applications, and lastly to de novo design (the last mile). Goddard’s passion for science, his insights, and his ability to actively engage with his collaborators in bold initiatives is a model for us all. As he enters his second half-century of scientific research and education, this book inspires future generations of students and researchers to employ and extend these powerful techniques and insights to tackle today’s critical problems in biology, chemistry, and materials. Examples highlighted in the book include new materials for photocatalysts to convert water and CO2 into fuels, novel catalysts for the highly selective and active catalysis of alkanes to valuable organics, simulating the chemistry in film growth to develop two-dimensional functional films, and predicting ligand–protein binding and activation to enable the design of targeted drugs with minimal side effects.
Handbook of Transition Metal Polymerization Catalysts
Author: Ray Hoff
Publisher: John Wiley & Sons
ISBN: 1119242215
Category : Technology & Engineering
Languages : en
Pages : 895
Book Description
Including recent advances and historically important catalysts, this book overviews methods for developing and applying polymerization catalysts – dealing with polymerization catalysts that afford commercially acceptable high yields of polymer with respect to catalyst mass or productivity. • Contains the valuable data needed to reproduce syntheses or use the catalyst for new applications • Offers a guide to the design and synthesis of catalysts, and their applications in synthesis of polymers • Includes the information essential for choosing the appropriate reactions to maximize yield of polymer synthesized • Presents new chapters on vanadium catalysts, Ziegler catalysts, laboratory homopolymerization, and copolymerization
Publisher: John Wiley & Sons
ISBN: 1119242215
Category : Technology & Engineering
Languages : en
Pages : 895
Book Description
Including recent advances and historically important catalysts, this book overviews methods for developing and applying polymerization catalysts – dealing with polymerization catalysts that afford commercially acceptable high yields of polymer with respect to catalyst mass or productivity. • Contains the valuable data needed to reproduce syntheses or use the catalyst for new applications • Offers a guide to the design and synthesis of catalysts, and their applications in synthesis of polymers • Includes the information essential for choosing the appropriate reactions to maximize yield of polymer synthesized • Presents new chapters on vanadium catalysts, Ziegler catalysts, laboratory homopolymerization, and copolymerization
Theoretical Aspects of Transition Metal Catalysis
Author: Gernot Frenking
Publisher: Springer Science & Business Media
ISBN: 9783540235101
Category : Science
Languages : en
Pages : 284
Book Description
Transition metal catalysis belongs to the most important chemical research areas because a ubiquitous number of chemical reactions are catalyzed by transition metal compounds. Many efforts are being made by industry and academia to find new and more efficient catalysts for chemical processes. Transition metals play a prominent role in catalytic research because they have been proven to show an enormous diversity in lowering the activation barrier for chemical reactions. For many years, the search for new catalysts was carried out by trial and error, which was costly and time consuming. The understanding of the mechanism of the catalytic process is often not very advanced because it is difficult to study the elementary steps of the catalysis with experimental techniques. The development of modern quantum chemical methods for calculating possible intermediates and transition states was a breakthrough in gaining an understanding of the reaction pathways of transition metal catalyzed reactions. This volume, organized into eight chapters written by leading scientists in the field, illustrates the progress made during the last decade. The reader will obtain a deep insight into the present state of quantum chemical research in transition metal catalysis.
Publisher: Springer Science & Business Media
ISBN: 9783540235101
Category : Science
Languages : en
Pages : 284
Book Description
Transition metal catalysis belongs to the most important chemical research areas because a ubiquitous number of chemical reactions are catalyzed by transition metal compounds. Many efforts are being made by industry and academia to find new and more efficient catalysts for chemical processes. Transition metals play a prominent role in catalytic research because they have been proven to show an enormous diversity in lowering the activation barrier for chemical reactions. For many years, the search for new catalysts was carried out by trial and error, which was costly and time consuming. The understanding of the mechanism of the catalytic process is often not very advanced because it is difficult to study the elementary steps of the catalysis with experimental techniques. The development of modern quantum chemical methods for calculating possible intermediates and transition states was a breakthrough in gaining an understanding of the reaction pathways of transition metal catalyzed reactions. This volume, organized into eight chapters written by leading scientists in the field, illustrates the progress made during the last decade. The reader will obtain a deep insight into the present state of quantum chemical research in transition metal catalysis.
Contemporary Catalysis
Author: Paul C J Kamer
Publisher: Royal Society of Chemistry
ISBN: 1849739900
Category : Science
Languages : en
Pages : 897
Book Description
Providing an integrated approach to the various aspects of catalysis, this textbook is ideal for graduate students from catalysis, engineering, and organic synthesis.
Publisher: Royal Society of Chemistry
ISBN: 1849739900
Category : Science
Languages : en
Pages : 897
Book Description
Providing an integrated approach to the various aspects of catalysis, this textbook is ideal for graduate students from catalysis, engineering, and organic synthesis.
Catalysis by Metal Complexes and Nanomaterials
Author: Meng Zhou (Chemistry professor)
Publisher:
ISBN: 9780841234376
Category : Catalysis
Languages : en
Pages :
Book Description
"Catalysis is truly an interdisciplinary field to which chemists, biologists, physicists, and engineers have made seminal contributions. This book aims to address the notably diverse topic of transition-metal catalysis in a single volume. The first half of the book is dedicated to the discrete and atomically precise metal complexes for homogeneous catalysis. Bimetallic, organometallic, and coordination complexes of early, late, and post-transition metals are described. Catalytic hydrogenation, oxidation, and coupling reactions are presented. The second half of the book focuses on three distinct types of nanomaterials: (1) zero- valent metallic nanoparticles, (2) titanium dioxide semiconductors, and (3) the porous coordination polymer known as the metal-organic framework. The chapters illustrate how deeply catalysis is influenced by other disciplines (e.g., coordination chemistry, bioinorganic chemistry, organometallic chemistry, computational chemistry, organic synthesis, photochemistry, materials science, environmental chemistry, green chemistry, and renewable energy). Advancements in these areas fuel the rapid growth of catalysis science. This book allows readers to reach a high-level of understanding in catalysis by learning from the perspectives of active practitioners. Unlike a textbook that provides a systematic, comprehensive, and historical education on the general topics of catalysis, this book offers critical case studies on select topics. Substantial emphasis is placed on the structural and fundamental properties that dictate catalyst performance, enabling readers to quickly understand and apply knowledge from cutting-edge studies and applications detailed within. This book can be utilized as a handbook, a textbook or textbook supplement, or a reference to guide future work"--
Publisher:
ISBN: 9780841234376
Category : Catalysis
Languages : en
Pages :
Book Description
"Catalysis is truly an interdisciplinary field to which chemists, biologists, physicists, and engineers have made seminal contributions. This book aims to address the notably diverse topic of transition-metal catalysis in a single volume. The first half of the book is dedicated to the discrete and atomically precise metal complexes for homogeneous catalysis. Bimetallic, organometallic, and coordination complexes of early, late, and post-transition metals are described. Catalytic hydrogenation, oxidation, and coupling reactions are presented. The second half of the book focuses on three distinct types of nanomaterials: (1) zero- valent metallic nanoparticles, (2) titanium dioxide semiconductors, and (3) the porous coordination polymer known as the metal-organic framework. The chapters illustrate how deeply catalysis is influenced by other disciplines (e.g., coordination chemistry, bioinorganic chemistry, organometallic chemistry, computational chemistry, organic synthesis, photochemistry, materials science, environmental chemistry, green chemistry, and renewable energy). Advancements in these areas fuel the rapid growth of catalysis science. This book allows readers to reach a high-level of understanding in catalysis by learning from the perspectives of active practitioners. Unlike a textbook that provides a systematic, comprehensive, and historical education on the general topics of catalysis, this book offers critical case studies on select topics. Substantial emphasis is placed on the structural and fundamental properties that dictate catalyst performance, enabling readers to quickly understand and apply knowledge from cutting-edge studies and applications detailed within. This book can be utilized as a handbook, a textbook or textbook supplement, or a reference to guide future work"--
CO2 Hydrogenation Catalysis
Author: Yuichiro Himeda
Publisher: John Wiley & Sons
ISBN: 3527346635
Category : Technology & Engineering
Languages : en
Pages : 322
Book Description
A guide to the effective catalysts and latest advances in CO2 conversion in chemicals and fuels Carbon dioxide hydrogenation is one of the most promising and economic techniques to utilize CO2 emissions to produce value-added chemicals. With contributions from an international team of experts on the topic, CO2 Hydrogenation Catalysis offers a comprehensive review of the most recent developments in the catalytic hydrogenation of carbon dioxide to formic acid/formate, methanol, methane, and C2+ products. The book explores the electroreduction of carbon dioxide and contains an overview on hydrogen production from formic acid and methanol. With a practical review of the advances and challenges in future CO2 hydrogenation research, the book provides an important guide for researchers in academia and industry working in the field of catalysis, organometallic chemistry, green and sustainable chemistry, as well as energy conversion and storage. This important book: Offers a unique review of effective catalysts and the latest advances in CO2 conversion Explores how to utilize CO2 emissions to produce value-added chemicals and fuels such as methanol, olefins, gasoline, aromatics Includes the latest research in homogeneous and heterogeneous catalysis as well as electrocatalysis Highlights advances and challenges for future investigation Written for chemists, catalytic chemists, electrochemists, chemists in industry, and chemical engineers, CO2 Hydrogenation Catalysis offers a comprehensive resource to understanding how CO2 emissions can create value-added chemicals.
Publisher: John Wiley & Sons
ISBN: 3527346635
Category : Technology & Engineering
Languages : en
Pages : 322
Book Description
A guide to the effective catalysts and latest advances in CO2 conversion in chemicals and fuels Carbon dioxide hydrogenation is one of the most promising and economic techniques to utilize CO2 emissions to produce value-added chemicals. With contributions from an international team of experts on the topic, CO2 Hydrogenation Catalysis offers a comprehensive review of the most recent developments in the catalytic hydrogenation of carbon dioxide to formic acid/formate, methanol, methane, and C2+ products. The book explores the electroreduction of carbon dioxide and contains an overview on hydrogen production from formic acid and methanol. With a practical review of the advances and challenges in future CO2 hydrogenation research, the book provides an important guide for researchers in academia and industry working in the field of catalysis, organometallic chemistry, green and sustainable chemistry, as well as energy conversion and storage. This important book: Offers a unique review of effective catalysts and the latest advances in CO2 conversion Explores how to utilize CO2 emissions to produce value-added chemicals and fuels such as methanol, olefins, gasoline, aromatics Includes the latest research in homogeneous and heterogeneous catalysis as well as electrocatalysis Highlights advances and challenges for future investigation Written for chemists, catalytic chemists, electrochemists, chemists in industry, and chemical engineers, CO2 Hydrogenation Catalysis offers a comprehensive resource to understanding how CO2 emissions can create value-added chemicals.
Gold Catalysis: An Homogeneous Approach
Author: Veronique Michelet
Publisher: World Scientific
ISBN: 1783265558
Category : Science
Languages : en
Pages : 564
Book Description
Research on designing new catalytic systems has been one of the most important fields in modern organic chemistry. One reason for this is the predominant contribution of catalysis to the concepts of atom economy and green chemistry in the 21st century. Gold, considered catalytically inactive for a long time, is now a fascinating partner of modern chemistry, as scientists such as Bond, Teles, Haruta, Hutchings, Ito and Hayashi opened new perspectives for the whole synthetic chemist community. This book presents the major advances in homogeneous catalysis, emphasizing the methodologies that create carbon-carbon and carbon-heteroatom bonds, the applications that create diversity and synthesize natural products, and the recent advances and challenges in asymmetric catalysis and computational research.It provides readers with in-depth information about homogeneous gold-catalyzed reactions and presents several explanations for the scientific design of a catalyst. Readers will be able to understand the entire gold area and find solutions to problems in catalysis.Gold Catalysis — An Homogeneous Approach is part of the Catalytic Science Series and features prominent authors who are experts in their respective fields.
Publisher: World Scientific
ISBN: 1783265558
Category : Science
Languages : en
Pages : 564
Book Description
Research on designing new catalytic systems has been one of the most important fields in modern organic chemistry. One reason for this is the predominant contribution of catalysis to the concepts of atom economy and green chemistry in the 21st century. Gold, considered catalytically inactive for a long time, is now a fascinating partner of modern chemistry, as scientists such as Bond, Teles, Haruta, Hutchings, Ito and Hayashi opened new perspectives for the whole synthetic chemist community. This book presents the major advances in homogeneous catalysis, emphasizing the methodologies that create carbon-carbon and carbon-heteroatom bonds, the applications that create diversity and synthesize natural products, and the recent advances and challenges in asymmetric catalysis and computational research.It provides readers with in-depth information about homogeneous gold-catalyzed reactions and presents several explanations for the scientific design of a catalyst. Readers will be able to understand the entire gold area and find solutions to problems in catalysis.Gold Catalysis — An Homogeneous Approach is part of the Catalytic Science Series and features prominent authors who are experts in their respective fields.
Computational Quantum Chemistry
Author: Masoud Soroush
Publisher: Elsevier
ISBN: 0128159847
Category : Science
Languages : en
Pages : 386
Book Description
Computational Quantum Chemistry: Insights into Polymerization Reactions consolidates extensive research results, couples them with computational quantum chemistry (CQC) methods applicable to polymerization reactions, and presents those results systematically. CQC has advanced polymer reaction engineering considerably for the past two decades. The book puts these advances into perspective. It also allows you to access the most up-to-date research and CQC methods applicable to polymerization reactions in a single volume. The content is rigorous yet accessible to graduate students as well as researchers who need a reference of state-of-the-art CQC methods with polymerization applications. - Consolidates more than 10 years of theoretical polymerization reaction research currently scattered across journal articles - Accessibly presents CQC methods applicable to polymerization reactions - Provides researchers with a one-stop source of the latest theoretical developments in polymer reaction engineering
Publisher: Elsevier
ISBN: 0128159847
Category : Science
Languages : en
Pages : 386
Book Description
Computational Quantum Chemistry: Insights into Polymerization Reactions consolidates extensive research results, couples them with computational quantum chemistry (CQC) methods applicable to polymerization reactions, and presents those results systematically. CQC has advanced polymer reaction engineering considerably for the past two decades. The book puts these advances into perspective. It also allows you to access the most up-to-date research and CQC methods applicable to polymerization reactions in a single volume. The content is rigorous yet accessible to graduate students as well as researchers who need a reference of state-of-the-art CQC methods with polymerization applications. - Consolidates more than 10 years of theoretical polymerization reaction research currently scattered across journal articles - Accessibly presents CQC methods applicable to polymerization reactions - Provides researchers with a one-stop source of the latest theoretical developments in polymer reaction engineering
Modeling and Simulation of Heterogeneous Catalytic Reactions
Author: Olaf Deutschmann
Publisher: John Wiley & Sons
ISBN: 3527639888
Category : Science
Languages : en
Pages : 364
Book Description
The Nobel Prize in Chemistry 2007 awarded to Gerhard Ertl for his groundbreaking studies in surface chemistry highlighted the importance of heterogeneous catalysis not only for modern chemical industry but also for environmental protection. Heterogeneous catalysis is seen as one of the key technologies which could solve the challenges associated with the increasing diversification of raw materials and energy sources. It is the decisive step in most chemical industry processes, a major method of reducing pollutant emissions from mobile sources and is present in fuel cells to produce electricity. The increasing power of computers over the last decades has led to modeling and numerical simulation becoming valuable tools in heterogeneous catalysis. This book covers many aspects, from the state-of-the-art in modeling and simulations of heterogeneous catalytic reactions on a molecular level to heterogeneous catalytic reactions from an engineering perspective. This first book on the topic conveys expert knowledge from surface science to both chemists and engineers interested in heterogeneous catalysis. The well-known and international authors comprehensively present many aspects of the wide bridge between surface science and catalytic technologies, including DFT calculations, reaction dynamics on surfaces, Monte Carlo simulations, heterogeneous reaction rates, reactions in porous media, electro-catalytic reactions, technical reactors, and perspectives of chemical and automobile industry on modeling heterogeneous catalysis. The result is a one-stop reference for theoretical and physical chemists, catalysis researchers, materials scientists, chemical engineers, and chemists in industry who would like to broaden their horizon and get a substantial overview on the different aspects of modeling and simulation of heterogeneous catalytic reactions.
Publisher: John Wiley & Sons
ISBN: 3527639888
Category : Science
Languages : en
Pages : 364
Book Description
The Nobel Prize in Chemistry 2007 awarded to Gerhard Ertl for his groundbreaking studies in surface chemistry highlighted the importance of heterogeneous catalysis not only for modern chemical industry but also for environmental protection. Heterogeneous catalysis is seen as one of the key technologies which could solve the challenges associated with the increasing diversification of raw materials and energy sources. It is the decisive step in most chemical industry processes, a major method of reducing pollutant emissions from mobile sources and is present in fuel cells to produce electricity. The increasing power of computers over the last decades has led to modeling and numerical simulation becoming valuable tools in heterogeneous catalysis. This book covers many aspects, from the state-of-the-art in modeling and simulations of heterogeneous catalytic reactions on a molecular level to heterogeneous catalytic reactions from an engineering perspective. This first book on the topic conveys expert knowledge from surface science to both chemists and engineers interested in heterogeneous catalysis. The well-known and international authors comprehensively present many aspects of the wide bridge between surface science and catalytic technologies, including DFT calculations, reaction dynamics on surfaces, Monte Carlo simulations, heterogeneous reaction rates, reactions in porous media, electro-catalytic reactions, technical reactors, and perspectives of chemical and automobile industry on modeling heterogeneous catalysis. The result is a one-stop reference for theoretical and physical chemists, catalysis researchers, materials scientists, chemical engineers, and chemists in industry who would like to broaden their horizon and get a substantial overview on the different aspects of modeling and simulation of heterogeneous catalytic reactions.