Characterization of the Genetic and Environmental Effects Underlying Soybean Seed Protein Concentration in Two Recombinant Inbred Populations

Characterization of the Genetic and Environmental Effects Underlying Soybean Seed Protein Concentration in Two Recombinant Inbred Populations PDF Author: Rachel Whaley
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Soybean (Glycine max (L.) Merrill) is a significant source of high-quality plant-based protein. An increased awareness of soybean health benefits has spurred a greater demand for soy-based food products, which has attracted attention from researchers, soybean growers and food processors. Soybean seed protein concentration is a complex trait that is influenced by genotype, environment and genotype-by-environment interaction effects, and is negatively associated with seed yield. The main objectives of this study were to: (i) determine the effects of genotype and genotype-by-environment interaction on seed protein concentration; and (ii) identify quantitative trait loci (QTL) associated with seed protein concentration suitable for marker-assisted selection. Genotypic and phenotypic data were collected from multi-environment trials of two recombinant inbred line (RIL) populations, derived from the high-protein cultivar, AC X790P (49%, dry weight basis), and low protein commercial cultivars, S18-R6 (41%) and S23-T5 (42%). Genotype, environment and genotype-by-environment interaction effects significantly affected seed protein concentration and seed yield. Significant correlations between seed protein concentration and seed yield were not observed in either population, and GGE biplots made it possible to identify for competitive high-protein genotypes. Seventy-nine QTL associated with seed protein concentration (with R2 ranging from 4.1% to 24.4%) were identified, 14 of which (with R2 ranging from 10.0% to 20.7%) were deemed desirable for marker-assisted selection.

Characterization of the Genetic and Environmental Effects Underlying Soybean Seed Protein Concentration in Two Recombinant Inbred Populations

Characterization of the Genetic and Environmental Effects Underlying Soybean Seed Protein Concentration in Two Recombinant Inbred Populations PDF Author: Rachel Whaley
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Soybean (Glycine max (L.) Merrill) is a significant source of high-quality plant-based protein. An increased awareness of soybean health benefits has spurred a greater demand for soy-based food products, which has attracted attention from researchers, soybean growers and food processors. Soybean seed protein concentration is a complex trait that is influenced by genotype, environment and genotype-by-environment interaction effects, and is negatively associated with seed yield. The main objectives of this study were to: (i) determine the effects of genotype and genotype-by-environment interaction on seed protein concentration; and (ii) identify quantitative trait loci (QTL) associated with seed protein concentration suitable for marker-assisted selection. Genotypic and phenotypic data were collected from multi-environment trials of two recombinant inbred line (RIL) populations, derived from the high-protein cultivar, AC X790P (49%, dry weight basis), and low protein commercial cultivars, S18-R6 (41%) and S23-T5 (42%). Genotype, environment and genotype-by-environment interaction effects significantly affected seed protein concentration and seed yield. Significant correlations between seed protein concentration and seed yield were not observed in either population, and GGE biplots made it possible to identify for competitive high-protein genotypes. Seventy-nine QTL associated with seed protein concentration (with R2 ranging from 4.1% to 24.4%) were identified, 14 of which (with R2 ranging from 10.0% to 20.7%) were deemed desirable for marker-assisted selection.

Genomic Regions Involved in Seed Protein, Oil, and Carbohydrate Concentration in Soybean

Genomic Regions Involved in Seed Protein, Oil, and Carbohydrate Concentration in Soybean PDF Author: Samantha J. McConaughy
Publisher:
ISBN:
Category : Soybean
Languages : en
Pages : 172

Get Book Here

Book Description
Soybeans [Glycine max (L.) Merr.] are processed for their high-quality vegetable oil and protein meal for feed, food, and industrial applications but, because of the high negative correlations between seed protein and oil concentration, it has been difficult to develop soybean lines with concomitant increases in both protein and oil. Previous studies considered only seed protein or oil concentration. This study is unique in that populations were developed using parental lines that differed in their protein, oil, and total carbohydrate concentrations in the mature seed. Two soybean populations were developed using soybean accession PI 547827 with lower total sugars as a common parent, crossed to two different soybean lines with modified protein and oil concentrations. The objectives were to identify quantitative trait loci (QTL) related to seed protein, oil, and carbohydrate concentration as well as for individual sugars sucrose, raffinose, and stachyose. For each of the two crosses, F4-derived recombinant inbred lines (RIL) were developed through single seed descent resulting in 526 and 404 RILs, respectively. Genotypes were determined for F4 plants by genotyping-by-sequence (GbS), resulting in 1,650 to 2,850 polymorphic SNPs used for QTL analyses. Populations were grown in an augmented design in two Nebraska and one Puerto Rico environment to evaluate seed composition, yield, and maturity. The QTL analyses identified 23 novel QTL across all seed composition traits, protein, oil, sum(p+o) or carbohydrate concentration, and each of the sugars on 17 different linkage groups. Ninety nine percent of the lines in the high protein cross, and 100% of the lines in the high oil cross exceeded processor targets of 11 pounds of oil per bushel and a soybean meal with greater than 47.5% protein. Correlations between yield and the sum(p+o) were either zero or slightly positive, indicating that it should be possible to identify high-yielding lines with increased seed protein and oil concentration. Populations like these, and the QTL identified here, will be useful in achieving those objectives to provide more value for both the processor and producer.

Evaluation of Four Biparental Soybean Populations for Identification of Seed Oil QTL, Cytoplasmic Effects, and Genotype X Environment Interactions

Evaluation of Four Biparental Soybean Populations for Identification of Seed Oil QTL, Cytoplasmic Effects, and Genotype X Environment Interactions PDF Author: Joseph Jedlicka
Publisher:
ISBN: 9781321298949
Category : Soybean
Languages : en
Pages : 162

Get Book Here

Book Description
Soybean [Glycine max (L.) Merr.] seeds are comprised of oils, proteins, and carbohydrates. The oil biosynthesis and storage pathways are complex and involve the cytoplasm, which is inherited maternally in soybean. Two pairs of populations were developed to characterize the high-oil phenotype. The first pair was created from a mating between each of two high-oil lines and Williams 82, and the second pair of populations was created by mating high-oil lines with high-oil lines. The objectives were to (1) determine if cytoplasmic effects were detectable for seed oil concentration, (2) evaluate estimates for heritability and genotypic and phenotypic correlations for seed oil, protein, oil+protein concentration, yield, and 100-seed weight, (3) characterize genotype x environment interactions for seed oil concentration, (4) perform QTL analyses for seed oil, protein, oil+protein concentration, yield, and 100-seed weight, and (5) perform a candidate gene analysis in QTL regions to identify putative genes responsible for oil biosynthesis and storage. The results indicated evidence for significant cytoplasmic effects for total oil concentration. The correlations between seed oil and protein concentrations were consistent with other studies, as were heritability estimates for all traits. Results for all four populations showed significant genotype x environment interactions for seed oil concentration, and stability analyses identified individuals that represent Type 1 or Type 2 stability. The QTL analyses indicated that the two high-oil lines that were crossed with Williams 82 had different sets of alleles responsible for increasing oil. The analyses also indicated that the two high-oil line x high-oil line cross populations had different sets of alleles responsible for oil concentration. All parents contributed alleles for increasing progeny oil, protein, oil+protein concentration, and yield. All but one parent contributed alleles for increasing 100-seed weight. One genomic region was identified that was associated with all traits. Candidate genes were identified that may be causative genes for the oil QTL, which include genes with Arabidopsis thaliana homologs for DGAT enzymes.

Soybean Seed Composition

Soybean Seed Composition PDF Author: Moulay Abdelmajid Kassem
Publisher: Springer Nature
ISBN: 3030829065
Category : Science
Languages : en
Pages : 638

Get Book Here

Book Description
Soybean Seed Composition covers three decades of advances in quantitative trait loci (QTL) mapping of seed protein, oil, fatty acids, amino acids, sugars, mineral nutrients, isoflavones, lunasin, and other beneficial compounds. It opens with coverage of seed protein, oil, fatty acids, and amino acids and the effects that genetic and environmental factors have on them. Detailed discussion of QTL that control seed protein, oil, and fatty acids follows, and the book also covers seed amino acids, macronutrients, micronutrients, sugars, and other compounds that are key to selection for crop improvement. The book also provides an overview of two decades of QTL mapping of mineral deficiencies in soybean, which sheds light on the importance of a balanced mineral nutrition in soybean and other crops, elucidates salt stress tolerance QTL mapping, which is another challenge that faces soybean and other crop production worldwide. The importance of soybean seed isoflavones from their biosynthesis and quantification methods to locations and variations in seeds, roots, and leaves, to their QTL mapping is discussed, as well as providing key information on lunasin, a bioactive anticancer peptide in soybean seeds that will help farmers and breeders to develop soybean cultivars with improved seed isoflavones and lunasin content. The book will be of interest to graduate students, academics, and researchers in the fields of genetic and QTL mapping of important agronomic traits in soybean and other crops.

Identification and Confirmation of Quantitative Trait Loci for Seed Protein and Oil Content of Soybean

Identification and Confirmation of Quantitative Trait Loci for Seed Protein and Oil Content of Soybean PDF Author: Jiao Wang
Publisher:
ISBN: 9781303141447
Category : Soy oil
Languages : en
Pages : 224

Get Book Here

Book Description
Protein and oil are the major chemical constituents of soybean seed that affect the quality of soyfood, feed, and oil products. Therefore, soybean cultivars with high protein and/or high oil are desirable for the soyfood and feed markets. Use of molecular-marker-assisted selection will facilitate the breeding process of such cultivar development. The objectives of this research were to identify new quantitative trait loci (QTL) and confirm previously reported QTL associated with seed protein and oil content by using simple sequence repeat (SSR) markers and single nucleotide polymorphism (SNP) markers. Two recombinant inbred line (RIL) populations consisting of 242 individuals from R05-1415 (high protein/low oil) x R05-638 (low protein/high oil) (population 1) and 214 individuals from R05-4256 (high oil/low protein) x V97-1346 (low oil/high protein) (population 2) were used in QTL mapping. F2 plants from the mapping populations were used for SSR/SNP genotyping. In the marker screening, 120 out of 626 SSR and 1652 out of 5361 SNP markers were polymorphic. The RILs from both populations were grown in a randomized complete block design in Argentina in 2010, Stuttgart and Keiser, AR in 2011 and 2012. Seed from F2:3, F2:4 and F2:5 lines were tested for protein and oil content by using near infrared transmittance technique based on 13% moisture. Protein and oil content in both RIL populations exhibited a typical normal distribution. Single marker analysis (SMA) and composite interval mapping (CIM) revealed two novel oil QTL on chromosomes 14 and 6 in population 2 which account for 17% and 13% of the oil content variation, respectively. A minor protein QTL was confirmed on chromosome 14. One major QTL with large effect was confirmed on chromosome 20 across genetic populations, locations, and years; this QTL has opposite effects on seed protein and oil content. Eight new SNP markers flanking this QTL region on chromosome 20 were identified in population 2. These new and confirmed QTL along with linked molecular markers for seed protein and oil content can be used for marker-assisted selection for seed composition improvement in soybean breeding programs.

The Soybean Genome

The Soybean Genome PDF Author: Henry T. Nguyen
Publisher: Springer
ISBN: 3319641980
Category : Science
Languages : en
Pages : 216

Get Book Here

Book Description
This book examines the application of soybean genome sequences to comparative, structural, and functional genomics. Since the availability of the soybean genome sequence has revolutionized molecular research on this important crop species, the book also describes how the genome sequence has shaped research on transposon biology and applications for gene identification, tilling and positional gene cloning. Further, the book shows how the genome sequence influences research in the areas of genetic mapping, marker development, and genome-wide association mapping for identifying important trait genes and soybean breeding. In closing, the economic and botanical aspects of the soybean are also addressed.

Genetic Mapping of Quantitative Trait Loci Conditioning Protein Concentration and Quality, and Other Seed Characteristics in Soybean [Glycine Max (L.) Merrill]

Genetic Mapping of Quantitative Trait Loci Conditioning Protein Concentration and Quality, and Other Seed Characteristics in Soybean [Glycine Max (L.) Merrill] PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Soybean [Glycine max (L.) Merr.] is grown for its high oil and protein concentration, which may be used in a wide array of industries throughout the world. It contributes about 15 billion dollars annually to the US economy. Focusing on protein concentration and quality, I was interested to discover genomic regions as quantitative trait loci (QTL) associated with nitrogen accumulation during reproductive stages, protein concentration, storage protein fractions, amino acid composition, seed size, oil content, and agronomic traits. A population of 101 F6-derived recombinant inbred lines (RIL) created from a cross of N87-984-16 x TN93-99 were used to achieve these objectives. Experiments were conducted in six environments during 2002 and 2003. A significant (P

Quantitative Trait Loci Associated with Protein, Oil and Carbohydrates in Soybean [Glycine Max (L.) Merr.] Seeds

Quantitative Trait Loci Associated with Protein, Oil and Carbohydrates in Soybean [Glycine Max (L.) Merr.] Seeds PDF Author: Ravi V. Mural
Publisher:
ISBN: 9781392412466
Category : Soybean
Languages : en
Pages : 0

Get Book Here

Book Description
Soybean is mainly cultivated for its oil and high quality protein meal for feed, fuel and food uses. Achieving an improved balance of protein and oil in the seed, along with yield will enhance crop value. In practice, this has been difficult to achieve due to significant negative correlations of oil and protein, and the mostly negative relationship reported between seed protein concentration and yield. Most previous studies have focused on increasing seed oil concentration (SOC) or seed protein concentration (SPC) individually, and a few focused on decreasing raffinosacharides to improve digestibility and metabolizable energy of the feed for monogastric animals. None of the studies to date have considered improving the balance of SOC and SPC by also considering variation in total soluble sugars, which comprise the third largest component in soybean seed. Three related bi-parental recombinant inbred line (RIL) populations were developed by crossing two plant introduction lines that have lower total sugar concentration with two high-yielding soybean lines having higher SOC resulting in two pairs of half-sib populations. The objectives of this study were to identify genomic regions that influence oil, protein and carbohydrate concentrations in the seed in three uniquely structured bi-parental RIL populations using Molecular Inversion Probes (MIPs) markers, and evaluate relationships among seed composition traits and seed yield, seed weight and plant maturity from multiple environments. In total, 51 QTLs for seed, seed composition and plant traits were mapped on 17 chromosomes. All populations showed transgressive segregation for the sum of seed oil+protein concentration (SUM) in both directions but showed little transgressive segregation for SOC or SPC in two populations. There was a positive correlation of SOC and SPC with the SUM in two populations and a near to zero relationship of SUM with plot yield. Over the three populations, about 85% of the lines met processor targets of 10-12 pounds of oil per bushel and would produce 48% protein meal. The selected lines from this study could be further evaluated for yield and desirable agronomic traits in multi-location trials, which could lead to higher yielding soybean lines with improved seed composition. This work will ultimately lead to higher profitability for both the processors and farmers.

Development of Chemically Mutagenized Soybean Populations for Improving Soybean Seed Oil Content and Forward and Reverse Genetics Screening

Development of Chemically Mutagenized Soybean Populations for Improving Soybean Seed Oil Content and Forward and Reverse Genetics Screening PDF Author: Alaa A. Alaswad
Publisher:
ISBN:
Category :
Languages : en
Pages : 58

Get Book Here

Book Description
Soybeans are among seeds the common plant foods that contains high protein contents and high oil. The protein provides about 35 to 38 percent of the seeds calories compared to around 20 to 30 percent in other legumes and many animal products. The quality of soy protein is notable and approaches the quality of meat and milk. Unlike many other good sources of protein, soybeans are low in saturated fat and are cholesterol-free. Its proteins provide all the important amino acids, most the amounts needed by humans (NSRL, 2010). As the most consumed vegetable oil in the world, soybean oil has been used substantially in the food industry (Soystats, 2010). Its utilization is determined by its fatty acid composition, with commodity soybean oil typically 13% palmatic acid (16:0), 4% stearic acid (18:0), 20% oleic acid (18:1), 55% linoleic acid (18:2), and 8% linolenic acid (18:3). The change of fatty acid profiles to improve soybean oil quality has been a long time goal of many researchers throughout the world. Biodiesel is an up and coming trend in energy production. Breeding effort can be undertaken in order to produce a higher energy profile soybean oil. Using ethyl-methanesulfonate (EMS) mutagenesis effects on DNA, significant changes to the genes and gene network underlying the protein and oil profile can be achieved. These changes are hard to accomplish using standard breeding techniques. In addition, high amount of linolenic and stearic acid are very important for fuel and biodiesel production, but are not good for food production due to the fact that such oil is oxidized easily and the food goes rancid quickly. However, soybean oil with elevated amount of oleic acid is desirable for food, because this monounsaturated fatty acid improves the nutrition and oxidative stability of soybean oil compared to other oils. In order to improve the quality of soybean oil and processed foods, chemically mutagenized soybeans have been developed in this project. Seeds harvested from individual M3 and M4 plants (from 2 successive years 2012 and 2013) were analyzed for protein content, oil composition, and content. Moreover, seven phenotypic traits including oil analysis (stearic, palmitic, oleic, linolenic and linoleic), seed protein content, weight of the seeds (High yield), seeds color, stem length, germination rates, and branch architecture were collected and analyzed in this project of soybean `Forrest' mutagenized population. The result of this research showed that there were 25 significantly different lines (p

Biological and Genetic Basis of Agronomical and Seed Quality Traits in Legumes

Biological and Genetic Basis of Agronomical and Seed Quality Traits in Legumes PDF Author: Jose C. Jimenez-Lopez
Publisher: Frontiers Media SA
ISBN: 2832504949
Category : Science
Languages : en
Pages : 448

Get Book Here

Book Description