Author: Sara Pedron
Publisher: Frontiers Media SA
ISBN: 2889457478
Category :
Languages : en
Pages : 193
Book Description
Prevalence of brain related diseases is expected to increase significantly in the next decades. Therefore, there is a vital need to develop effective, personalized models of human brain that can provide information about brain development, and the unique neurobiology of brain disorders. The use of biomaterials can play a strategic role for the future understanding and treatment of complex CNS diseases. Three-dimensional brain cultures have shown promise in disease modelling, cell transplantation and modulation of tissue repair.
Biomaterials for Brain Therapy and Repair
Author: Sara Pedron
Publisher: Frontiers Media SA
ISBN: 2889457478
Category :
Languages : en
Pages : 193
Book Description
Prevalence of brain related diseases is expected to increase significantly in the next decades. Therefore, there is a vital need to develop effective, personalized models of human brain that can provide information about brain development, and the unique neurobiology of brain disorders. The use of biomaterials can play a strategic role for the future understanding and treatment of complex CNS diseases. Three-dimensional brain cultures have shown promise in disease modelling, cell transplantation and modulation of tissue repair.
Publisher: Frontiers Media SA
ISBN: 2889457478
Category :
Languages : en
Pages : 193
Book Description
Prevalence of brain related diseases is expected to increase significantly in the next decades. Therefore, there is a vital need to develop effective, personalized models of human brain that can provide information about brain development, and the unique neurobiology of brain disorders. The use of biomaterials can play a strategic role for the future understanding and treatment of complex CNS diseases. Three-dimensional brain cultures have shown promise in disease modelling, cell transplantation and modulation of tissue repair.
In Situ Tissue Regeneration
Author: Sang Jin Lee
Publisher: Academic Press
ISBN: 012802500X
Category : Medical
Languages : en
Pages : 460
Book Description
In Situ Tissue Regeneration: Host Cell Recruitment and Biomaterial Design explores the body's ability to mobilize endogenous stem cells to the site of injury and details the latest strategies developed for inducing and supporting the body's own regenerating capacity. From the perspective of regenerative medicine and tissue engineering, this book describes the mechanism of host cell recruitment, cell sourcing, cellular and molecular roles in cell differentiation, navigational cues and niche signals, and a tissue-specific smart biomaterial system that can be applied to a wide range of therapies. The work is divided into four sections to provide a thorough overview and helpful hints for future discoveries: endogenous cell sources; biochemical and physical cues; smart biomaterial development; and applications. - Explores the body's ability to mobilize endogenous stem cells to the site of injury - Details the latest strategies developed for inducing and supporting the body's own regenerating capacity - Presents smart biomaterials in cell-based tissue engineering applications—from the cell level to applications—in the first unified volume - Features chapter authors and editors who are authorities in this emerging field - Prioritizes a discussion of the future direction of smart biomaterials for in situ tissue regeneration, which will affect an emerging and lucrative industry
Publisher: Academic Press
ISBN: 012802500X
Category : Medical
Languages : en
Pages : 460
Book Description
In Situ Tissue Regeneration: Host Cell Recruitment and Biomaterial Design explores the body's ability to mobilize endogenous stem cells to the site of injury and details the latest strategies developed for inducing and supporting the body's own regenerating capacity. From the perspective of regenerative medicine and tissue engineering, this book describes the mechanism of host cell recruitment, cell sourcing, cellular and molecular roles in cell differentiation, navigational cues and niche signals, and a tissue-specific smart biomaterial system that can be applied to a wide range of therapies. The work is divided into four sections to provide a thorough overview and helpful hints for future discoveries: endogenous cell sources; biochemical and physical cues; smart biomaterial development; and applications. - Explores the body's ability to mobilize endogenous stem cells to the site of injury - Details the latest strategies developed for inducing and supporting the body's own regenerating capacity - Presents smart biomaterials in cell-based tissue engineering applications—from the cell level to applications—in the first unified volume - Features chapter authors and editors who are authorities in this emerging field - Prioritizes a discussion of the future direction of smart biomaterials for in situ tissue regeneration, which will affect an emerging and lucrative industry
Smart Biomaterials
Author: Mitsuhiro Ebara
Publisher: Springer
ISBN: 4431544003
Category : Technology & Engineering
Languages : en
Pages : 380
Book Description
This book provides comprehensive coverage of smart biomaterials and their potential applications, a field that is developing at a very rapid pace. Because smart biomaterials are an emerging class of biomaterials that respond to small changes in external stimuli with large discontinuous changes in their physical properties, they have been designed to act as an “on–off” switch for, among others, bio separation, immunoanalysis, drug delivery technologies, gene therapy, diagnostics, bio sensors and artificial muscles. After an introduction to the topic and the history of smart biomaterials, the author gives the reader an in-depth look at the properties, mechanics, and characterization of smart biomaterials including hydrogels, particles, assemblies, surfaces, fibers and conjugates. Information on the wide range of applications for these materials follows, including drug delivery, tissue engineering, diagnostics, biosensors, bio separation and actuators. In addition, recent advances in shape memory biomaterials as active components of medical devices are also presented.
Publisher: Springer
ISBN: 4431544003
Category : Technology & Engineering
Languages : en
Pages : 380
Book Description
This book provides comprehensive coverage of smart biomaterials and their potential applications, a field that is developing at a very rapid pace. Because smart biomaterials are an emerging class of biomaterials that respond to small changes in external stimuli with large discontinuous changes in their physical properties, they have been designed to act as an “on–off” switch for, among others, bio separation, immunoanalysis, drug delivery technologies, gene therapy, diagnostics, bio sensors and artificial muscles. After an introduction to the topic and the history of smart biomaterials, the author gives the reader an in-depth look at the properties, mechanics, and characterization of smart biomaterials including hydrogels, particles, assemblies, surfaces, fibers and conjugates. Information on the wide range of applications for these materials follows, including drug delivery, tissue engineering, diagnostics, biosensors, bio separation and actuators. In addition, recent advances in shape memory biomaterials as active components of medical devices are also presented.
Biomaterials and Regenerative Medicine
Author: Peter X. Ma
Publisher: Cambridge University Press
ISBN: 1139991906
Category : Technology & Engineering
Languages : en
Pages : 1283
Book Description
Written by world-leading experts, this book focusses on the role of biomaterials in stem cell research and regenerative medicine. Emphasising basic principles and methodology, it covers stem cell interactions, fabrication technologies, design principles, physical characterisation and biological evaluation, across a broad variety of systems and biomaterials. Topics include: stem cell biology, including embryonic stem cells, IPS, HSC and progenitor cells; modern scaffold structures, including biopolymer, bioceramic, micro- and nanofiber, ECM and biohydrogel; advanced fabrication technologies, including computer-aided tissue engineering and organ printing; cutting-edge drug delivery systems and gene therapy techniques; and medical applications spanning hard and soft tissues, the cardiovascular system and organ regeneration. With a contribution by Nobel laureate Shinya Yamanaka, this is a must-have reference for anyone in the field of biomaterials, stem cell biology and engineering, tissue engineering and regenerative medicine.
Publisher: Cambridge University Press
ISBN: 1139991906
Category : Technology & Engineering
Languages : en
Pages : 1283
Book Description
Written by world-leading experts, this book focusses on the role of biomaterials in stem cell research and regenerative medicine. Emphasising basic principles and methodology, it covers stem cell interactions, fabrication technologies, design principles, physical characterisation and biological evaluation, across a broad variety of systems and biomaterials. Topics include: stem cell biology, including embryonic stem cells, IPS, HSC and progenitor cells; modern scaffold structures, including biopolymer, bioceramic, micro- and nanofiber, ECM and biohydrogel; advanced fabrication technologies, including computer-aided tissue engineering and organ printing; cutting-edge drug delivery systems and gene therapy techniques; and medical applications spanning hard and soft tissues, the cardiovascular system and organ regeneration. With a contribution by Nobel laureate Shinya Yamanaka, this is a must-have reference for anyone in the field of biomaterials, stem cell biology and engineering, tissue engineering and regenerative medicine.
Advances in Research on Neurodegeneration
Author: R. Horowski
Publisher: Springer Science & Business Media
ISBN: 3709106435
Category : Medical
Languages : en
Pages : 230
Book Description
The 10th International Winter Conference on Neurodegeneration (lWCN) has taken place from February 14-16,2002, at the lovely "SchloB Ziethen", an old prussian manor (in Prussia, 'faute de mieux', called 'SchloB', i. e. cas tle or residence). This place is 20 km off Tegel Airport, Berlin's main airport, and has been beautifully restored by baroness Edith von Thiingen (nee von BUlow, i. e. of historical Prussian aristocracy); it lends itself rather perfectly for the IWCN type of small interdisciplinary workshops on neurodegenera tion which combine short lectures with plenty of discussion. In this context, we could quote Alexander von Humboldt's famous opening words for one of the first international scientific meetings held at Berlin, on September 18, 1828: "The main purpose ... does not consist in a mutual reading of manuscripts all to be printed after at least one year in specialised publications, but in the personal communication amongst those who work in similar scientific fields; the oral and thus more stimulating exchange of ideas, might they represent facts, opinions or doubts; the foundation of friendly relations which convey illumination to our sciences, serene grace to our lives and tolerance and mildness to our habits ... Berlin, Sept. 18, 1828 Alexander von Humboldt To the IWCN aficionado, it may come as a little surprise that this is the pub lication of the 10th Winter Conference as this might mean that they must have missed number 9.
Publisher: Springer Science & Business Media
ISBN: 3709106435
Category : Medical
Languages : en
Pages : 230
Book Description
The 10th International Winter Conference on Neurodegeneration (lWCN) has taken place from February 14-16,2002, at the lovely "SchloB Ziethen", an old prussian manor (in Prussia, 'faute de mieux', called 'SchloB', i. e. cas tle or residence). This place is 20 km off Tegel Airport, Berlin's main airport, and has been beautifully restored by baroness Edith von Thiingen (nee von BUlow, i. e. of historical Prussian aristocracy); it lends itself rather perfectly for the IWCN type of small interdisciplinary workshops on neurodegenera tion which combine short lectures with plenty of discussion. In this context, we could quote Alexander von Humboldt's famous opening words for one of the first international scientific meetings held at Berlin, on September 18, 1828: "The main purpose ... does not consist in a mutual reading of manuscripts all to be printed after at least one year in specialised publications, but in the personal communication amongst those who work in similar scientific fields; the oral and thus more stimulating exchange of ideas, might they represent facts, opinions or doubts; the foundation of friendly relations which convey illumination to our sciences, serene grace to our lives and tolerance and mildness to our habits ... Berlin, Sept. 18, 1828 Alexander von Humboldt To the IWCN aficionado, it may come as a little surprise that this is the pub lication of the 10th Winter Conference as this might mean that they must have missed number 9.
CNS Regeneration
Author: Mark H. Tuszynski
Publisher: Elsevier
ISBN: 0080529216
Category : Science
Languages : en
Pages : 713
Book Description
CNS Regeneration focuses on some of the leading current neurological disease models and methods for promoting central nervous system regeneration. Editors and authors are experts in the field, with experience in basic as well as applied neuroscience. In a comprehensive, logical manner, the book unites important basic science advances in neuroscience with novel medical strategies. - The first comprehensive, authoritative volume on the topic of CNS regeneration - Reviews current therapeutic approaches - Editors and authors are experts in the field - Appeals to those interested in basic science as well as those concerned with its medical application
Publisher: Elsevier
ISBN: 0080529216
Category : Science
Languages : en
Pages : 713
Book Description
CNS Regeneration focuses on some of the leading current neurological disease models and methods for promoting central nervous system regeneration. Editors and authors are experts in the field, with experience in basic as well as applied neuroscience. In a comprehensive, logical manner, the book unites important basic science advances in neuroscience with novel medical strategies. - The first comprehensive, authoritative volume on the topic of CNS regeneration - Reviews current therapeutic approaches - Editors and authors are experts in the field - Appeals to those interested in basic science as well as those concerned with its medical application
Natural-Based Polymers for Biomedical Applications
Author: Rui L. Reis
Publisher: Elsevier
ISBN: 1845694813
Category : Science
Languages : en
Pages : 829
Book Description
Polymers from natural sources are particularly useful as biomaterials and in regenerative medicine, given their similarity to the extracellular matrix and other polymers in the human body. This important book reviews the wealth of research on both tried and promising new natural-based biomedical polymers, together with their applications as implantable biomaterials, controlled-release carriers or scaffolds for tissue engineering.The first part of the book reviews the sources, processing and properties of natural-based polymers for biomedical applications. Part two describes how the surfaces of polymer-based biomaterials can be modified to improve their functionality. The third part of the book discusses the use of natural-based polymers for biodegradable scaffolds and hydrogels in tissue engineering. Building on this foundation, Part four looks at the particular use of natural-gelling polymers for encapsulation, tissue engineering and regenerative medicine. The penultimate group of chapters reviews the use of natural-based polymers as delivery systems for drugs, hormones, enzymes and growth factors. The final part of the book summarises research on the key issue of biocompatibility.Natural-based polymers for biomedical applications is a standard reference for biomedical engineers, those studying and researching in this important area, and the medical community. - Examines the sources, processing and properties of natural based polymers for biomedical applications - Explains how the surfaces of polymer based biomaterials can be modified to improve their functionality - Discusses the use of natural based polymers for hydrogels in tissue engineering, and in particular natural gelling polymers for encapsulation and regenerative medicine
Publisher: Elsevier
ISBN: 1845694813
Category : Science
Languages : en
Pages : 829
Book Description
Polymers from natural sources are particularly useful as biomaterials and in regenerative medicine, given their similarity to the extracellular matrix and other polymers in the human body. This important book reviews the wealth of research on both tried and promising new natural-based biomedical polymers, together with their applications as implantable biomaterials, controlled-release carriers or scaffolds for tissue engineering.The first part of the book reviews the sources, processing and properties of natural-based polymers for biomedical applications. Part two describes how the surfaces of polymer-based biomaterials can be modified to improve their functionality. The third part of the book discusses the use of natural-based polymers for biodegradable scaffolds and hydrogels in tissue engineering. Building on this foundation, Part four looks at the particular use of natural-gelling polymers for encapsulation, tissue engineering and regenerative medicine. The penultimate group of chapters reviews the use of natural-based polymers as delivery systems for drugs, hormones, enzymes and growth factors. The final part of the book summarises research on the key issue of biocompatibility.Natural-based polymers for biomedical applications is a standard reference for biomedical engineers, those studying and researching in this important area, and the medical community. - Examines the sources, processing and properties of natural based polymers for biomedical applications - Explains how the surfaces of polymer based biomaterials can be modified to improve their functionality - Discusses the use of natural based polymers for hydrogels in tissue engineering, and in particular natural gelling polymers for encapsulation and regenerative medicine
Injectable Biomaterials
Author: Brent Vernon
Publisher: Elsevier
ISBN: 0857091379
Category : Medical
Languages : en
Pages : 425
Book Description
Novel injectable materials for non-invasive surgical procedures are becoming increasingly popular. An advantage of these materials include easy deliverability into the body, however the suitability of their mechanical properties must also be carefully considered. Injectable biomaterials covers the materials, properties and biomedical applications of injectable materials, as well as novel developments in the technology.Part one focuses on materials and properties, with chapters covering the design of injectable biomaterials as well as their rheological properties and the mechanical properties of injectable polymers and composites. Part two covers the clinical applications of injectable biomaterials, including chapters on drug delivery, tissue engineering and orthopaedic applications as well as injectable materials for gene delivery systems. In part three, existing and developing technologies are discussed. Chapters in this part cover such topics as environmentally responsive biomaterials, injectable nanotechnology, injectable biodegradable materials and biocompatibility. There are also chapters focusing on troubleshooting and potential future applications of injectable biomaterials.With its distinguished editor and international team of contributors, Injectable biomaterials is a standard reference for materials scientists and researchers working in the biomaterials industry, as well as those with an academic interest in the subject. It will also be beneficial to clinicians. - Comprehensively examines the materials, properties and biomedical applications of injectable materials, as well as novel developments in the technology - Reviews the design of injectable biomaterials as well as their rheological properties and the mechanical properties of injectable polymers and composites - Explores clinical applications of injectable biomaterials, including drug delivery, tissue engineering, orthopaedic applications and injectable materials for gene delivery systems
Publisher: Elsevier
ISBN: 0857091379
Category : Medical
Languages : en
Pages : 425
Book Description
Novel injectable materials for non-invasive surgical procedures are becoming increasingly popular. An advantage of these materials include easy deliverability into the body, however the suitability of their mechanical properties must also be carefully considered. Injectable biomaterials covers the materials, properties and biomedical applications of injectable materials, as well as novel developments in the technology.Part one focuses on materials and properties, with chapters covering the design of injectable biomaterials as well as their rheological properties and the mechanical properties of injectable polymers and composites. Part two covers the clinical applications of injectable biomaterials, including chapters on drug delivery, tissue engineering and orthopaedic applications as well as injectable materials for gene delivery systems. In part three, existing and developing technologies are discussed. Chapters in this part cover such topics as environmentally responsive biomaterials, injectable nanotechnology, injectable biodegradable materials and biocompatibility. There are also chapters focusing on troubleshooting and potential future applications of injectable biomaterials.With its distinguished editor and international team of contributors, Injectable biomaterials is a standard reference for materials scientists and researchers working in the biomaterials industry, as well as those with an academic interest in the subject. It will also be beneficial to clinicians. - Comprehensively examines the materials, properties and biomedical applications of injectable materials, as well as novel developments in the technology - Reviews the design of injectable biomaterials as well as their rheological properties and the mechanical properties of injectable polymers and composites - Explores clinical applications of injectable biomaterials, including drug delivery, tissue engineering, orthopaedic applications and injectable materials for gene delivery systems
Bioinspired Biomaterials
Author: Heung Jae Chun
Publisher: Springer
ISBN: 9789811532603
Category : Medical
Languages : en
Pages : 229
Book Description
This book is the first of two volumes that together offer a comprehensive account of cutting-edge advances in the development of biomaterials for use within tissue engineering and regenerative medicine. Topics addressed in this volume, which is devoted to bioinspired biomaterials, range from novel biomaterials for regenerative medicine through to emerging enabling technologies with applications in, for example, drug delivery, maternal–fetal medicine, peripheral nerve repair and regeneration, and brain tumor therapy. New bioinspired hydrogels receive detailed attention in the book, and a further focus is the use of bioinspired biomaterials in the regulation of stem cell fate. Here the coverage includes the role of scaffolds in cartilage regeneration, the bioapplication of inorganic nanomaterials in tissue engineering, and guidance of cell migration to improve tissue regeneration. The authors are recognized experts in the interdisciplinary field of regenerative medicine and the book will be of value for all with an interest in regenerative medicine based on biomaterials.
Publisher: Springer
ISBN: 9789811532603
Category : Medical
Languages : en
Pages : 229
Book Description
This book is the first of two volumes that together offer a comprehensive account of cutting-edge advances in the development of biomaterials for use within tissue engineering and regenerative medicine. Topics addressed in this volume, which is devoted to bioinspired biomaterials, range from novel biomaterials for regenerative medicine through to emerging enabling technologies with applications in, for example, drug delivery, maternal–fetal medicine, peripheral nerve repair and regeneration, and brain tumor therapy. New bioinspired hydrogels receive detailed attention in the book, and a further focus is the use of bioinspired biomaterials in the regulation of stem cell fate. Here the coverage includes the role of scaffolds in cartilage regeneration, the bioapplication of inorganic nanomaterials in tissue engineering, and guidance of cell migration to improve tissue regeneration. The authors are recognized experts in the interdisciplinary field of regenerative medicine and the book will be of value for all with an interest in regenerative medicine based on biomaterials.
Cutting-Edge Enabling Technologies for Regenerative Medicine
Author: Heung Jae Chun
Publisher: Springer
ISBN: 9811309507
Category : Medical
Languages : en
Pages : 490
Book Description
This book explores in depth the latest enabling technologies for regenerative medicine. The opening section examines advances in 3D bioprinting and the fabrication of electrospun and electrosprayed scaffolds. The potential applications of intelligent nanocomposites are then considered, covering, for example, graphene-based nanocomposites, intrinsically conductive polymer nanocomposites, and smart diagnostic contact lens systems. The third section is devoted to various drug delivery systems and strategies for regenerative medicine. Finally, a wide range of future enabling technologies are discussed. Examples include temperature-responsive cell culture surfaces, nanopatterned scaffolds for neural tissue engineering, and process system engineering methodologies for application in tissue development. This is one of two books to be based on contributions from leading experts that were delivered at the 2018 Asia University Symposium on Biomedical Engineering in Seoul, Korea – the companion book examines in depth novel biomaterials for regenerative medicine.
Publisher: Springer
ISBN: 9811309507
Category : Medical
Languages : en
Pages : 490
Book Description
This book explores in depth the latest enabling technologies for regenerative medicine. The opening section examines advances in 3D bioprinting and the fabrication of electrospun and electrosprayed scaffolds. The potential applications of intelligent nanocomposites are then considered, covering, for example, graphene-based nanocomposites, intrinsically conductive polymer nanocomposites, and smart diagnostic contact lens systems. The third section is devoted to various drug delivery systems and strategies for regenerative medicine. Finally, a wide range of future enabling technologies are discussed. Examples include temperature-responsive cell culture surfaces, nanopatterned scaffolds for neural tissue engineering, and process system engineering methodologies for application in tissue development. This is one of two books to be based on contributions from leading experts that were delivered at the 2018 Asia University Symposium on Biomedical Engineering in Seoul, Korea – the companion book examines in depth novel biomaterials for regenerative medicine.