Author: Saeed Mian Qaisar
Publisher: Springer Nature
ISBN: 3031232399
Category : Computers
Languages : en
Pages : 385
Book Description
This book presents the modern technological advancements and revolutions in the biomedical sector. Progress in the contemporary sensing, Internet of Things (IoT) and machine learning algorithms and architectures have introduced new approaches in the mobile healthcare. A continuous observation of patients with critical health situation is required. It allows monitoring of their health status during daily life activities such as during sports, walking and sleeping. It is realizable by intelligently hybridizing the modern IoT framework, wireless biomedical implants and cloud computing. Such solutions are currently under development and in testing phases by healthcare and governmental institutions, research laboratories and biomedical companies. The biomedical signals such as electrocardiogram (ECG), electroencephalogram (EEG), Electromyography (EMG), phonocardiogram (PCG), Chronic Obstructive Pulmonary (COP), Electrooculography (EoG), photoplethysmography (PPG), and image modalities such as positron emission tomography (PET), magnetic resonance imaging (MRI) and computerized tomography (CT) are non-invasively acquired, measured, and processed via the biomedical sensors and gadgets. These signals and images represent the activities and conditions of human cardiovascular, neural, vision and cerebral systems. Multi-channel sensing of these signals and images with an appropriate granularity is required for an effective monitoring and diagnosis. It renders a big volume of data and its analysis is not feasible manually. Therefore, automated healthcare systems are in the process of evolution. These systems are mainly based on biomedical signal and image acquisition and sensing, preconditioning, features extraction and classification stages. The contemporary biomedical signal sensing, preconditioning, features extraction and intelligent machine and deep learning-based classification algorithms are described. Each chapter starts with the importance, problem statement and motivation. A self-sufficient description is provided. Therefore, each chapter can be read independently. To the best of the editors’ knowledge, this book is a comprehensive compilation on advances in non-invasive biomedical signal sensing and processing with machine and deep learning. We believe that theories, algorithms, realizations, applications, approaches, and challenges, which are presented in this book will have their impact and contribution in the design and development of modern and effective healthcare systems.
Advances in Non-Invasive Biomedical Signal Sensing and Processing with Machine Learning
Author: Saeed Mian Qaisar
Publisher: Springer Nature
ISBN: 3031232399
Category : Computers
Languages : en
Pages : 385
Book Description
This book presents the modern technological advancements and revolutions in the biomedical sector. Progress in the contemporary sensing, Internet of Things (IoT) and machine learning algorithms and architectures have introduced new approaches in the mobile healthcare. A continuous observation of patients with critical health situation is required. It allows monitoring of their health status during daily life activities such as during sports, walking and sleeping. It is realizable by intelligently hybridizing the modern IoT framework, wireless biomedical implants and cloud computing. Such solutions are currently under development and in testing phases by healthcare and governmental institutions, research laboratories and biomedical companies. The biomedical signals such as electrocardiogram (ECG), electroencephalogram (EEG), Electromyography (EMG), phonocardiogram (PCG), Chronic Obstructive Pulmonary (COP), Electrooculography (EoG), photoplethysmography (PPG), and image modalities such as positron emission tomography (PET), magnetic resonance imaging (MRI) and computerized tomography (CT) are non-invasively acquired, measured, and processed via the biomedical sensors and gadgets. These signals and images represent the activities and conditions of human cardiovascular, neural, vision and cerebral systems. Multi-channel sensing of these signals and images with an appropriate granularity is required for an effective monitoring and diagnosis. It renders a big volume of data and its analysis is not feasible manually. Therefore, automated healthcare systems are in the process of evolution. These systems are mainly based on biomedical signal and image acquisition and sensing, preconditioning, features extraction and classification stages. The contemporary biomedical signal sensing, preconditioning, features extraction and intelligent machine and deep learning-based classification algorithms are described. Each chapter starts with the importance, problem statement and motivation. A self-sufficient description is provided. Therefore, each chapter can be read independently. To the best of the editors’ knowledge, this book is a comprehensive compilation on advances in non-invasive biomedical signal sensing and processing with machine and deep learning. We believe that theories, algorithms, realizations, applications, approaches, and challenges, which are presented in this book will have their impact and contribution in the design and development of modern and effective healthcare systems.
Publisher: Springer Nature
ISBN: 3031232399
Category : Computers
Languages : en
Pages : 385
Book Description
This book presents the modern technological advancements and revolutions in the biomedical sector. Progress in the contemporary sensing, Internet of Things (IoT) and machine learning algorithms and architectures have introduced new approaches in the mobile healthcare. A continuous observation of patients with critical health situation is required. It allows monitoring of their health status during daily life activities such as during sports, walking and sleeping. It is realizable by intelligently hybridizing the modern IoT framework, wireless biomedical implants and cloud computing. Such solutions are currently under development and in testing phases by healthcare and governmental institutions, research laboratories and biomedical companies. The biomedical signals such as electrocardiogram (ECG), electroencephalogram (EEG), Electromyography (EMG), phonocardiogram (PCG), Chronic Obstructive Pulmonary (COP), Electrooculography (EoG), photoplethysmography (PPG), and image modalities such as positron emission tomography (PET), magnetic resonance imaging (MRI) and computerized tomography (CT) are non-invasively acquired, measured, and processed via the biomedical sensors and gadgets. These signals and images represent the activities and conditions of human cardiovascular, neural, vision and cerebral systems. Multi-channel sensing of these signals and images with an appropriate granularity is required for an effective monitoring and diagnosis. It renders a big volume of data and its analysis is not feasible manually. Therefore, automated healthcare systems are in the process of evolution. These systems are mainly based on biomedical signal and image acquisition and sensing, preconditioning, features extraction and classification stages. The contemporary biomedical signal sensing, preconditioning, features extraction and intelligent machine and deep learning-based classification algorithms are described. Each chapter starts with the importance, problem statement and motivation. A self-sufficient description is provided. Therefore, each chapter can be read independently. To the best of the editors’ knowledge, this book is a comprehensive compilation on advances in non-invasive biomedical signal sensing and processing with machine and deep learning. We believe that theories, algorithms, realizations, applications, approaches, and challenges, which are presented in this book will have their impact and contribution in the design and development of modern and effective healthcare systems.
Artificial Intelligence and Multimodal Signal Processing in Human-Machine Interaction
Author: Abdulhamit Subasi
Publisher: Elsevier
ISBN: 0443291519
Category : Science
Languages : en
Pages : 426
Book Description
Artificial Intelligence and Multimodal Signal Processing in Human-Machine Interaction presents an overview of an emerging field that is concerned with exploiting multiple modalities of communication in both Artificial Intelligence and Human-Machine Interaction. The book not only provides cross disciplinary research in the fields of multimodal signal acquisition and sensing, analysis, IoTs (Internet of Things), Artificial Intelligence, and system architectures, it also evaluates the role of Artificial Intelligence I in relation to the realization of contemporary Human Machine Interaction (HMI) systems.Readers are introduced to the multimodal signals and their role in the identification of the intended subjects, mental state and the realization of HMI systems are explored, and the applications of signal processing and machine/ensemble/deep learning for HMIs are assessed. A description of proposed methodologies is provided, and related works are also presented. This is a valuable resource for researchers, health professionals, postgraduate students, post doc researchers and faculty members in the fields of HMIs, Brain-Computer Interface (BCI), Prosthesis, Computer vision, and Mental state estimation, and all those who wish to broaden their knowledge in the allied field. - Covers advances in the multimodal signal processing and artificial intelligence assistive HMIs - Presents theories, algorithms, realizations, applications, approaches, and challenges that will have their impact and contribution in the design and development of modern and effective HMI (Human Machine Interaction) system - Presents different aspects of the multimodal signals, from the sensing to analysis using hardware/software, and making use of machine/ensemble/deep learning in the intended problem-solving
Publisher: Elsevier
ISBN: 0443291519
Category : Science
Languages : en
Pages : 426
Book Description
Artificial Intelligence and Multimodal Signal Processing in Human-Machine Interaction presents an overview of an emerging field that is concerned with exploiting multiple modalities of communication in both Artificial Intelligence and Human-Machine Interaction. The book not only provides cross disciplinary research in the fields of multimodal signal acquisition and sensing, analysis, IoTs (Internet of Things), Artificial Intelligence, and system architectures, it also evaluates the role of Artificial Intelligence I in relation to the realization of contemporary Human Machine Interaction (HMI) systems.Readers are introduced to the multimodal signals and their role in the identification of the intended subjects, mental state and the realization of HMI systems are explored, and the applications of signal processing and machine/ensemble/deep learning for HMIs are assessed. A description of proposed methodologies is provided, and related works are also presented. This is a valuable resource for researchers, health professionals, postgraduate students, post doc researchers and faculty members in the fields of HMIs, Brain-Computer Interface (BCI), Prosthesis, Computer vision, and Mental state estimation, and all those who wish to broaden their knowledge in the allied field. - Covers advances in the multimodal signal processing and artificial intelligence assistive HMIs - Presents theories, algorithms, realizations, applications, approaches, and challenges that will have their impact and contribution in the design and development of modern and effective HMI (Human Machine Interaction) system - Presents different aspects of the multimodal signals, from the sensing to analysis using hardware/software, and making use of machine/ensemble/deep learning in the intended problem-solving
Proceedings of Ninth International Congress on Information and Communication Technology
Author: Xin-She Yang
Publisher: Springer Nature
ISBN: 9819732891
Category :
Languages : en
Pages : 670
Book Description
Publisher: Springer Nature
ISBN: 9819732891
Category :
Languages : en
Pages : 670
Book Description
Non-Invasive Health Systems based on Advanced Biomedical Signal and Image Processing
Author: Adel Al-Jumaily
Publisher: CRC Press
ISBN: 100383812X
Category : Technology & Engineering
Languages : en
Pages : 502
Book Description
This book contains up-to-date noninvasive monitoring and diagnosing systems closely developed by a set of scientists, engineers, and physicians. The chapters are the results of different biomedical projects and theoretical studies that were coupled by simulations and real-world data. Non-Invasive Health Systems based on Advanced Biomedical Signal and Image Processing provides a multifaceted view of various biomedical and clinical approaches to health monitoring systems. The authors introduce advanced signal- and image-processing techniques as well as other noninvasive monitoring and diagnostic systems such as inertial sensors in wearable devices and novel algorithm-based hybrid learning systems for biosignal processing. The book includes a discussion of designing electronic circuits and systems for biomedical applications and analyzes several issues related to real-world data and how they relate to health technology including ECG signal monitoring and processing in the operating room. The authors also include detailed discussions of different systems for monitoring various conditions and diseases including sleep apnea, skin cancer, deep vein thrombosis, and prosthesis controls. This book is intended for a wide range of readers including scientists, researchers, physicians, and electronics and biomedical engineers. It will cover the gap between theory and real life applications.
Publisher: CRC Press
ISBN: 100383812X
Category : Technology & Engineering
Languages : en
Pages : 502
Book Description
This book contains up-to-date noninvasive monitoring and diagnosing systems closely developed by a set of scientists, engineers, and physicians. The chapters are the results of different biomedical projects and theoretical studies that were coupled by simulations and real-world data. Non-Invasive Health Systems based on Advanced Biomedical Signal and Image Processing provides a multifaceted view of various biomedical and clinical approaches to health monitoring systems. The authors introduce advanced signal- and image-processing techniques as well as other noninvasive monitoring and diagnostic systems such as inertial sensors in wearable devices and novel algorithm-based hybrid learning systems for biosignal processing. The book includes a discussion of designing electronic circuits and systems for biomedical applications and analyzes several issues related to real-world data and how they relate to health technology including ECG signal monitoring and processing in the operating room. The authors also include detailed discussions of different systems for monitoring various conditions and diseases including sleep apnea, skin cancer, deep vein thrombosis, and prosthesis controls. This book is intended for a wide range of readers including scientists, researchers, physicians, and electronics and biomedical engineers. It will cover the gap between theory and real life applications.
Signal Processing Driven Machine Learning Techniques for Cardiovascular Data Processing
Author: Rajesh Kumar Tripathy
Publisher: Elsevier
ISBN: 0443141401
Category : Computers
Languages : en
Pages : 186
Book Description
Signal Processing Driven Machine Learning Techniques for Cardiovascular Data Processing features recent advances in machine learning coupled with new signal processing-based methods for cardiovascular data analysis. Topics in this book include machine learning methods such as supervised learning, unsupervised learning, semi-supervised learning, and meta-learning combined with different signal processing techniques such as multivariate data analysis, time-frequency analysis, multiscale analysis, and feature extraction techniques for the detection of cardiovascular diseases, heart valve disorders, hypertension, and activity monitoring using ECG, PPG, and PCG signals.In addition, this book also includes the applications of digital signal processing (time-frequency analysis, multiscale decomposition, feature extraction, non-linear analysis, and transform domain methods), machine learning and deep learning (convolutional neural network (CNN), recurrent neural network (RNN), transformer and attention-based models, etc.) techniques for the analysis of cardiac signals. The interpretable machine learning and deep learning models combined with signal processing for cardiovascular data analysis are also covered. - Provides details regarding the application of various signal processing and machine learning-based methods for cardiovascular signal analysis - Covers methodologies as well as experimental results and studies - Helps readers understand the use of different cardiac signals such as ECG, PCG, and PPG for the automated detection of heart ailments and other related biomedical applications
Publisher: Elsevier
ISBN: 0443141401
Category : Computers
Languages : en
Pages : 186
Book Description
Signal Processing Driven Machine Learning Techniques for Cardiovascular Data Processing features recent advances in machine learning coupled with new signal processing-based methods for cardiovascular data analysis. Topics in this book include machine learning methods such as supervised learning, unsupervised learning, semi-supervised learning, and meta-learning combined with different signal processing techniques such as multivariate data analysis, time-frequency analysis, multiscale analysis, and feature extraction techniques for the detection of cardiovascular diseases, heart valve disorders, hypertension, and activity monitoring using ECG, PPG, and PCG signals.In addition, this book also includes the applications of digital signal processing (time-frequency analysis, multiscale decomposition, feature extraction, non-linear analysis, and transform domain methods), machine learning and deep learning (convolutional neural network (CNN), recurrent neural network (RNN), transformer and attention-based models, etc.) techniques for the analysis of cardiac signals. The interpretable machine learning and deep learning models combined with signal processing for cardiovascular data analysis are also covered. - Provides details regarding the application of various signal processing and machine learning-based methods for cardiovascular signal analysis - Covers methodologies as well as experimental results and studies - Helps readers understand the use of different cardiac signals such as ECG, PCG, and PPG for the automated detection of heart ailments and other related biomedical applications
Photoplethysmography
Author: Panicos A. Kyriacou
Publisher: Academic Press
ISBN: 012823525X
Category : Technology & Engineering
Languages : en
Pages : 508
Book Description
Photoplethysmography: Technology, Signal Analysis, and Applications is the first comprehensive volume on the theory, principles, and technology (sensors and electronics) of photoplethysmography (PPG). It provides a detailed description of the current state-of-the-art technologies/optical components enabling the extreme miniaturization of such sensors, as well as comprehensive coverage of PPG signal analysis techniques including machine learning and artificial intelligence. The book also outlines the huge range of PPG applications in healthcare, with a strong focus on the contribution of PPG in wearable sensors and PPG for cardiovascular assessment. - Presents the underlying principles and technology surrounding PPG - Includes applications for healthcare and wellbeing - Focuses on PPG in wearable sensors and devices - Presents advanced signal analysis techniques - Includes cutting-edge research, applications and future directions
Publisher: Academic Press
ISBN: 012823525X
Category : Technology & Engineering
Languages : en
Pages : 508
Book Description
Photoplethysmography: Technology, Signal Analysis, and Applications is the first comprehensive volume on the theory, principles, and technology (sensors and electronics) of photoplethysmography (PPG). It provides a detailed description of the current state-of-the-art technologies/optical components enabling the extreme miniaturization of such sensors, as well as comprehensive coverage of PPG signal analysis techniques including machine learning and artificial intelligence. The book also outlines the huge range of PPG applications in healthcare, with a strong focus on the contribution of PPG in wearable sensors and PPG for cardiovascular assessment. - Presents the underlying principles and technology surrounding PPG - Includes applications for healthcare and wellbeing - Focuses on PPG in wearable sensors and devices - Presents advanced signal analysis techniques - Includes cutting-edge research, applications and future directions
Machine Learning for Advanced Functional Materials
Author: Nirav Joshi
Publisher: Springer Nature
ISBN: 9819903939
Category : Science
Languages : en
Pages : 306
Book Description
This book presents recent advancements of machine learning methods and their applications in material science and nanotechnologies. It provides an introduction to the field and for those who wish to explore machine learning in modeling as well as conduct data analyses of material characteristics. The book discusses ways to enhance the material’s electrical and mechanical properties based on available regression methods for supervised learning and optimization of material attributes. In summary, the growing interest among academics and professionals in the field of machine learning methods in functional nanomaterials such as sensors, solar cells, and photocatalysis is the driving force for behind this book. This is a comprehensive scientific reference book on machine learning for advanced functional materials and provides an in-depth examination of recent achievements in material science by focusing on topical issues using machine learning methods.
Publisher: Springer Nature
ISBN: 9819903939
Category : Science
Languages : en
Pages : 306
Book Description
This book presents recent advancements of machine learning methods and their applications in material science and nanotechnologies. It provides an introduction to the field and for those who wish to explore machine learning in modeling as well as conduct data analyses of material characteristics. The book discusses ways to enhance the material’s electrical and mechanical properties based on available regression methods for supervised learning and optimization of material attributes. In summary, the growing interest among academics and professionals in the field of machine learning methods in functional nanomaterials such as sensors, solar cells, and photocatalysis is the driving force for behind this book. This is a comprehensive scientific reference book on machine learning for advanced functional materials and provides an in-depth examination of recent achievements in material science by focusing on topical issues using machine learning methods.
Advanced Bioscience and Biosystems for Detection and Management of Diabetes
Author: Kishor Kumar Sadasivuni
Publisher: Springer Nature
ISBN: 3030997286
Category : Technology & Engineering
Languages : en
Pages : 313
Book Description
This book covers the medical condition of diabetic patients, their early symptoms and methods conventionally used for diagnosing and monitoring diabetes. It describes various techniques and technologies used for diabetes detection. The content is built upon moving from regressive technology (invasive) and adapting new-age pain-free technologies (non-invasive), machine learning and artificial intelligence for diabetes monitoring and management. This book details all the popular technologies used in the health care and medical fields for diabetic patients. An entire chapter is dedicated to how the future of this field will be shaping up and the challenges remaining to be conquered. Finally, it shows artificial intelligence and predictions, which can be beneficial for the early detection, dose monitoring and surveillance for patients suffering from diabetes
Publisher: Springer Nature
ISBN: 3030997286
Category : Technology & Engineering
Languages : en
Pages : 313
Book Description
This book covers the medical condition of diabetic patients, their early symptoms and methods conventionally used for diagnosing and monitoring diabetes. It describes various techniques and technologies used for diabetes detection. The content is built upon moving from regressive technology (invasive) and adapting new-age pain-free technologies (non-invasive), machine learning and artificial intelligence for diabetes monitoring and management. This book details all the popular technologies used in the health care and medical fields for diabetic patients. An entire chapter is dedicated to how the future of this field will be shaping up and the challenges remaining to be conquered. Finally, it shows artificial intelligence and predictions, which can be beneficial for the early detection, dose monitoring and surveillance for patients suffering from diabetes
Advances in Signal Processing and Intelligent Recognition Systems
Author: Sabu M. Thampi
Publisher: Springer Nature
ISBN: 9811548285
Category : Computers
Languages : en
Pages : 414
Book Description
This book constitutes the refereed proceedings of the 5th International Symposium on Advances in Signal Processing and Intelligent Recognition Systems, SIRS 2019, held in Trivandrum, India, in December 2019. The 19 revised full papers and 8 revised short papers presented were carefully reviewed and selected from 63 submissions. The papers cover wide research fields including information retrieval, human-computer interaction (HCI), information extraction, speech recognition.
Publisher: Springer Nature
ISBN: 9811548285
Category : Computers
Languages : en
Pages : 414
Book Description
This book constitutes the refereed proceedings of the 5th International Symposium on Advances in Signal Processing and Intelligent Recognition Systems, SIRS 2019, held in Trivandrum, India, in December 2019. The 19 revised full papers and 8 revised short papers presented were carefully reviewed and selected from 63 submissions. The papers cover wide research fields including information retrieval, human-computer interaction (HCI), information extraction, speech recognition.
Biosignal Processing and Classification Using Computational Learning and Intelligence
Author: Alejandro A. Torres-García
Publisher: Academic Press
ISBN: 0128204281
Category : Science
Languages : en
Pages : 538
Book Description
Biosignal Processing and Classification Using Computational Learning and Intelligence: Principles, Algorithms and Applications posits an approach for biosignal processing and classification using computational learning and intelligence, highlighting that the term biosignal refers to all kinds of signals that can be continuously measured and monitored in living beings. The book is composed of five relevant parts. Part One is an introduction to biosignals and Part Two describes the relevant techniques for biosignal processing, feature extraction and feature selection/dimensionality reduction. Part Three presents the fundamentals of computational learning (machine learning). Then, the main techniques of computational intelligence are described in Part Four. The authors focus primarily on the explanation of the most used methods in the last part of this book, which is the most extensive portion of the book. This part consists of a recapitulation of the newest applications and reviews in which these techniques have been successfully applied to the biosignals' domain, including EEG-based Brain-Computer Interfaces (BCI) focused on P300 and Imagined Speech, emotion recognition from voice and video, leukemia recognition, infant cry recognition, EEGbased ADHD identification among others. - Provides coverage of the fundamentals of signal processing, including sensing the heart, sending the brain, sensing human acoustic, and sensing other organs - Includes coverage biosignal pre-processing techniques such as filtering, artifiact removal, and feature extraction techniques such as Fourier transform, wavelet transform, and MFCC - Covers the latest techniques in machine learning and computational intelligence, including Supervised Learning, common classifiers, feature selection, dimensionality reduction, fuzzy logic, neural networks, Deep Learning, bio-inspired algorithms, and Hybrid Systems - Written by engineers to help engineers, computer scientists, researchers, and clinicians understand the technology and applications of computational learning to biosignal processing
Publisher: Academic Press
ISBN: 0128204281
Category : Science
Languages : en
Pages : 538
Book Description
Biosignal Processing and Classification Using Computational Learning and Intelligence: Principles, Algorithms and Applications posits an approach for biosignal processing and classification using computational learning and intelligence, highlighting that the term biosignal refers to all kinds of signals that can be continuously measured and monitored in living beings. The book is composed of five relevant parts. Part One is an introduction to biosignals and Part Two describes the relevant techniques for biosignal processing, feature extraction and feature selection/dimensionality reduction. Part Three presents the fundamentals of computational learning (machine learning). Then, the main techniques of computational intelligence are described in Part Four. The authors focus primarily on the explanation of the most used methods in the last part of this book, which is the most extensive portion of the book. This part consists of a recapitulation of the newest applications and reviews in which these techniques have been successfully applied to the biosignals' domain, including EEG-based Brain-Computer Interfaces (BCI) focused on P300 and Imagined Speech, emotion recognition from voice and video, leukemia recognition, infant cry recognition, EEGbased ADHD identification among others. - Provides coverage of the fundamentals of signal processing, including sensing the heart, sending the brain, sensing human acoustic, and sensing other organs - Includes coverage biosignal pre-processing techniques such as filtering, artifiact removal, and feature extraction techniques such as Fourier transform, wavelet transform, and MFCC - Covers the latest techniques in machine learning and computational intelligence, including Supervised Learning, common classifiers, feature selection, dimensionality reduction, fuzzy logic, neural networks, Deep Learning, bio-inspired algorithms, and Hybrid Systems - Written by engineers to help engineers, computer scientists, researchers, and clinicians understand the technology and applications of computational learning to biosignal processing