Uncertainty and Vagueness in Knowledge Based Systems

Uncertainty and Vagueness in Knowledge Based Systems PDF Author: Rudolf Kruse
Publisher: Springer Science & Business Media
ISBN: 3642767028
Category : Computers
Languages : en
Pages : 495

Get Book Here

Book Description
The primary aim of this monograph is to provide a formal framework for the representation and management of uncertainty and vagueness in the field of artificial intelligence. It puts particular emphasis on a thorough analysis of these phenomena and on the development of sound mathematical modeling approaches. Beyond this theoretical basis the scope of the book includes also implementational aspects and a valuation of existing models and systems. The fundamental ambition of this book is to show that vagueness and un certainty can be handled adequately by using measure-theoretic methods. The presentation of applicable knowledge representation formalisms and reasoning algorithms substantiates the claim that efficiency requirements do not necessar ily require renunciation of an uncompromising mathematical modeling. These results are used to evaluate systems based on probabilistic methods as well as on non-standard concepts such as certainty factors, fuzzy sets or belief functions. The book is intended to be self-contained and addresses researchers and practioneers in the field of knowledge based systems. It is in particular suit able as a textbook for graduate-level students in AI, operations research and applied probability. A solid mathematical background is necessary for reading this book. Essential parts of the material have been the subject of courses given by the first author for students of computer science and mathematics held since 1984 at the University in Braunschweig.

Uncertainty and Vagueness in Knowledge Based Systems

Uncertainty and Vagueness in Knowledge Based Systems PDF Author: Rudolf Kruse
Publisher: Springer Science & Business Media
ISBN: 3642767028
Category : Computers
Languages : en
Pages : 495

Get Book Here

Book Description
The primary aim of this monograph is to provide a formal framework for the representation and management of uncertainty and vagueness in the field of artificial intelligence. It puts particular emphasis on a thorough analysis of these phenomena and on the development of sound mathematical modeling approaches. Beyond this theoretical basis the scope of the book includes also implementational aspects and a valuation of existing models and systems. The fundamental ambition of this book is to show that vagueness and un certainty can be handled adequately by using measure-theoretic methods. The presentation of applicable knowledge representation formalisms and reasoning algorithms substantiates the claim that efficiency requirements do not necessar ily require renunciation of an uncompromising mathematical modeling. These results are used to evaluate systems based on probabilistic methods as well as on non-standard concepts such as certainty factors, fuzzy sets or belief functions. The book is intended to be self-contained and addresses researchers and practioneers in the field of knowledge based systems. It is in particular suit able as a textbook for graduate-level students in AI, operations research and applied probability. A solid mathematical background is necessary for reading this book. Essential parts of the material have been the subject of courses given by the first author for students of computer science and mathematics held since 1984 at the University in Braunschweig.

Symbolic and Quantitative Approaches to Uncertainty

Symbolic and Quantitative Approaches to Uncertainty PDF Author: Rudolf Kruse
Publisher: Springer Science & Business Media
ISBN: 9783540546597
Category : Computers
Languages : en
Pages : 380

Get Book Here

Book Description
A variety of formalisms have been developed to address such aspects of handling imperfect knowledge as uncertainty, vagueness, imprecision, incompleteness, and partial inconsistency. Some of the most familiar approaches in this research field are nonmonotonic logics, modal logics, probability theory (Bayesian and non-Bayesian), belief function theory, and fuzzy sets and possibility theory. ESPRIT Basic Research Action 3085, entitled Defeasible Reasoning and Uncertainty Management Systems (DRUMS), aims to contribute to the elucidation of similarities and differences between these formalisms. It consists of 11 active European research groups. The European Conference on Symbolic and Quantitative Approaches to Uncertainty (ESQAU) provides a forum for these groups to meet and discuss their scientific results. This volume contains 42 contributions accepted for the ESQAU meeting held in October 1991 in Marseille, together with 12 articles presenting the activities of the DRUMS groups and two invited presentations.

Introduction to Knowledge Systems

Introduction to Knowledge Systems PDF Author: Mark Stefik
Publisher: Morgan Kaufmann
ISBN:
Category : Computers
Languages : en
Pages : 906

Get Book Here

Book Description
The art of building knowledge systems is multidisciplinary, incorporating computer science theory, programming practice and psychology. This book incorporates these varied fields covering topics ranging from algorithms and representations to techniques for acquiring the task specific knowledge.

Uncertainty in Knowledge Bases

Uncertainty in Knowledge Bases PDF Author: Bernadette Bouchon-Meunier
Publisher: Springer Science & Business Media
ISBN: 9783540543466
Category : Computers
Languages : en
Pages : 630

Get Book Here

Book Description
One out of every two men over eigthy suffers from carcinoma of the prostate.It is discovered incidentally in many patients with an alleged benign prostatic hyperplasia. In treating patients, the authors make clear that primary radical prostatectomy is preferred over transurethral resection due to the lower complication rate.

Knowledge Based Systems

Knowledge Based Systems PDF Author: S. G. Tzafestas
Publisher: World Scientific
ISBN: 9789810228309
Category : Computers
Languages : en
Pages : 656

Get Book Here

Book Description
The field of knowledge-based systems (KBS) has expanded enormously during the last years, and many important techniques and tools are currently available. Applications of KBS range from medicine to engineering and aerospace.This book provides a selected set of state-of-the-art contributions that present advanced techniques, tools and applications. These contributions have been prepared by a group of eminent researchers and professionals in the field.The theoretical topics covered include: knowledge acquisition, machine learning, genetic algorithms, knowledge management and processing under uncertainty, conflict detection and resolution, structured knowledge architectures, and natural language-based man-machine communication.The Applications include: Real-time decision support, system fault diagnosis, quality assessment, manufacturing production, robotic assembly, and robotic welding.The reader can save considerable time in searching the scattered literature in the field, and can find here a powerful set of how-to-do issues and results.

Intelligent Knowledge-Based Systems

Intelligent Knowledge-Based Systems PDF Author: Cornelius T. Leondes
Publisher: Springer Science & Business Media
ISBN: 1402078293
Category : Computers
Languages : en
Pages : 2041

Get Book Here

Book Description
This five-volume set clearly manifests the great significance of these key technologies for the new economies of the new millennium. The discussions provide a wealth of practical ideas intended to foster innovation in thought and, consequently, in the further development of technology. Together, they comprise a significant and uniquely comprehensive reference source for research workers, practitioners, computer scientists, academics, students, and others on the international scene for years to come.

Uncertain Logics, Variables and Systems

Uncertain Logics, Variables and Systems PDF Author: Z. Bubnicki
Publisher: Springer
ISBN: 3540457941
Category : Technology & Engineering
Languages : en
Pages : 140

Get Book Here

Book Description
The ideas of uncertain variables based on uncertain logics have been introduced and developed for a wide class of uncertain systems. The purpose of this mo- graph is to present basic concepts, definitions and results concerning the uncertain variables and their applications to analysis and decision problems in uncertain systems described by traditional mathematical models and by knowledge rep- sentations. I hope that the book can be useful for graduate students, researchers and all readers working in the field of control and information science. Especially for those interested in the problems of uncertain decision support systems and unc- tain control systems. I wish to express my gratitude to my co-workers from the Institute of Control and Systems Engineering of Wroclaw University of Technology, who assisted in the preparation of the manuscript. My special thanks go to Dr L.Siwek for the valuable remarks and for his work concerning the formatting of the text.

Uncertainty and Information

Uncertainty and Information PDF Author: George J. Klir
Publisher: John Wiley & Sons
ISBN: 0471755567
Category : Technology & Engineering
Languages : en
Pages : 499

Get Book Here

Book Description
Deal with information and uncertainty properly and efficientlyusing tools emerging from generalized information theory Uncertainty and Information: Foundations of Generalized InformationTheory contains comprehensive and up-to-date coverage of resultsthat have emerged from a research program begun by the author inthe early 1990s under the name "generalized information theory"(GIT). This ongoing research program aims to develop a formalmathematical treatment of the interrelated concepts of uncertaintyand information in all their varieties. In GIT, as in classicalinformation theory, uncertainty (predictive, retrodictive,diagnostic, prescriptive, and the like) is viewed as amanifestation of information deficiency, while information isviewed as anything capable of reducing the uncertainty. A broadconceptual framework for GIT is obtained by expanding theformalized language of classical set theory to include moreexpressive formalized languages based on fuzzy sets of varioustypes, and by expanding classical theory of additive measures toinclude more expressive non-additive measures of varioustypes. This landmark book examines each of several theories for dealingwith particular types of uncertainty at the following fourlevels: * Mathematical formalization of the conceived type ofuncertainty * Calculus for manipulating this particular type ofuncertainty * Justifiable ways of measuring the amount of uncertainty in anysituation formalizable in the theory * Methodological aspects of the theory With extensive use of examples and illustrations to clarify complexmaterial and demonstrate practical applications, generoushistorical and bibliographical notes, end-of-chapter exercises totest readers' newfound knowledge, glossaries, and an Instructor'sManual, this is an excellent graduate-level textbook, as well as anoutstanding reference for researchers and practitioners who dealwith the various problems involving uncertainty and information. AnInstructor's Manual presenting detailed solutions to all theproblems in the book is available from the Wiley editorialdepartment.

A New Paradigm Of Knowledge Engineering By Soft Computing

A New Paradigm Of Knowledge Engineering By Soft Computing PDF Author: Liya Ding
Publisher: World Scientific
ISBN: 9814491764
Category : Computers
Languages : en
Pages : 392

Get Book Here

Book Description
Soft computing (SC) consists of several computing paradigms, including neural networks, fuzzy set theory, approximate reasoning, and derivative-free optimization methods such as genetic algorithms. The integration of those constituent methodologies forms the core of SC. In addition, the synergy allows SC to incorporate human knowledge effectively, deal with imprecision and uncertainty, and learn to adapt to unknown or changing environments for better performance. Together with other modern technologies, SC and its applications exert unprecedented influence on intelligent systems that mimic human intelligence in thinking, learning, reasoning, and many other aspects.Knowledge engineering (KE), which deals with knowledge acquisition, representation, validation, inferencing, explanation, and maintenance, has made significant progress recently, owing to the indefatigable efforts of researchers. Undoubtedly, the hot topics of data mining and knowledge/data discovery have injected new life into the classical AI world.This book tells readers how KE has been influenced and extended by SC and how SC will be helpful in pushing the frontier of KE further. It is intended for researchers and graduate students to use as a reference in the study of knowledge engineering and intelligent systems. The reader is expected to have a basic knowledge of fuzzy logic, neural networks, genetic algorithms, and knowledge-based systems.

Information Processing and Management of Uncertainty in Knowledge-Based Systems

Information Processing and Management of Uncertainty in Knowledge-Based Systems PDF Author: Davide Ciucci
Publisher: Springer Nature
ISBN: 303108974X
Category : Computers
Languages : en
Pages : 807

Get Book Here

Book Description
This two-volume set (CCIS 1601-1602) constitutes the proceedings of the 19th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, IPMU 2021, held in Milan, Italy, in July 2022. The 124 papers were carefully reviewed and selected from 188 submissions. The papers are organized in topical sections as follows: aggregation theory beyond the unit interval; formal concept analysis and uncertainty; fuzzy implication functions; fuzzy mathematical analysis and its applications; generalized sets and operators; information fusion techniques based on aggregation functions, pre-aggregation functions, and their generalizations; interval uncertainty; knowledge acquisition, representation and reasoning; logical structures of opposition and logical syllogisms; mathematical fuzzy logics; theoretical and applied aspects of imprecise probabilities; data science and machine learning; decision making modeling and applications; e-health; fuzzy methods in data mining and knowledge discovery; soft computing and artificia intelligence techniques in image processing; soft methods in statistics and data analysis; uncertainty, heterogeneity, reliability and explainability in AI; weak and cautious supervised learning.