Viscosity of Liquid - Liquid Dispersions in Laminar and Turbulent Flow

Viscosity of Liquid - Liquid Dispersions in Laminar and Turbulent Flow PDF Author: John Anthony Cengel
Publisher:
ISBN:
Category : Two-phase flow
Languages : en
Pages : 220

Get Book Here

Book Description

Viscosity of Liquid - Liquid Dispersions in Laminar and Turbulent Flow

Viscosity of Liquid - Liquid Dispersions in Laminar and Turbulent Flow PDF Author: John Anthony Cengel
Publisher:
ISBN:
Category : Two-phase flow
Languages : en
Pages : 220

Get Book Here

Book Description


Velocity and Temperature Profiles for Turbulent Flow of Liquid-liquid Dispersions in Pipes

Velocity and Temperature Profiles for Turbulent Flow of Liquid-liquid Dispersions in Pipes PDF Author: Azimuddin Ahmad Faruqui
Publisher:
ISBN:
Category : Liquids
Languages : en
Pages : 268

Get Book Here

Book Description


Turbulent Flow of Liquid-liquid Dispersions

Turbulent Flow of Liquid-liquid Dispersions PDF Author: John Philip Ward
Publisher:
ISBN:
Category : Fluid dynamics
Languages : en
Pages : 706

Get Book Here

Book Description
The momentum transfer characteristics of liquid-liquid dispersions were studied under conditions of turbulent flow in a cirular conduit. Experiments were conducted to obtain drop size, friction factors and velocity profiles for three organic phases dispersed in water. The test sections consisted of straight copper tubes 1-inch OD and 0.830-inch ID. The velocity profiles and drop size measurements were made at a point 8-1/2 feet downstream from the entrance to these tubes. The dispersions were formed and maintained by the mixing action of a high speed centrifugal pump. The organic phases were a light petroleum solvent, a light oil and a heavy oil with viscosities of 1, 15, and 200 centipoise, respectively. Flow rates were in the range 1-4 lb/sec and concentrations from 5 to 50 volume percent were studied. A photographic method of drop size determination was developed. Excellent results are obtained for drop diameters in the range 5-800 microns. Dispersions with concentrations from 1 to 50 volume percent were photographed. The drop size and the shape of the drop size distributions depended strongly on dispersed phase viscosity. The range of drop diameters was found to increase with dispersed phase viscosity. Velocity profile data were obtained in the turbulent core for three flow rates and four concentrations for the light oil dispersions and two flow rates and three concentrations for the heavy oil dispersions. The light oil dispersions were found to behave as single phase Newtonian fluids. The solvent dispersions have previously been shown to behave as single phase Newtonian liquids. The heavy oil dispersions did not behave as Newtonian fluids. These results were combined with the drop size data and a previously proposed criteria for treating dispersions as single phase fluids to give the relation [see PDF for formula] where d32 is the Sauter mean diameter of the dispersed drops. Dispersions which do not meet this criterion are presumed to have a "slip" velocity, i.e., the larger drops move relative to the fluid element in which they are contained. Thus they do not behave as a single phase fluid. The velocity profiles for the light oil dispersions were used to calculate an effective dispersion viscosity [mu subscript e]. The viscosity increased with dispersed phase concentration. Effective viscosities for the solvent dispersion had been determined by previous workers. A comparison of the viscosities and drop size data for these two systems shows that at equal concentrations the effective viscosity of a dispersion is a function of the drop size distribution, decreasing with increasing size range. Effective viscosities for the heavy oil dispersions were determined from the friction factor data and appeared to be independent of concentration in the range 5 to 17 volume percent. This may be explained by a "slip" velocity and an analysis of the drop size distributions. A study was made of one water-in-solvent dispersion and it was found that water droplets adhered to the pipe wall. The average size of these droplets could be determined from the observed friction factor data. The droplets adhering to the wall were observed to undergo coalescence with the droplets in the flowing dispersion. Several other observations made through the optical portion of the photographic arrangement tend to support the coalescence theory recently proposed by Howarth.

Momentum and Heat Transfer Characteristics of Liquid-liquid Dispersions in Turbulent Flow in an Annulus

Momentum and Heat Transfer Characteristics of Liquid-liquid Dispersions in Turbulent Flow in an Annulus PDF Author: Lachhman Dev
Publisher:
ISBN:
Category : Hydrodynamics
Languages : en
Pages : 342

Get Book Here

Book Description


Multiphase Particulate Systems in Turbulent Flows

Multiphase Particulate Systems in Turbulent Flows PDF Author: Wioletta Podgórska
Publisher: CRC Press
ISBN: 1482235706
Category : Science
Languages : en
Pages : 482

Get Book Here

Book Description
Multiphase Particulate Systems in Turbulent Flows: Fluid-Liquid and Solid-Liquid Dispersions provides methods necessary to analyze complex particulate systems and related phenomena including physical, chemical and mathematical description of fundamental processes influencing crystal size and shape, suspension rheology, interfacial area of drops and bubbles in extractors and bubble columns. Examples of mathematical model formulation for different processes taking place in such systems is shown. Discussing connections between turbulent mixing mechanisms and precipitation, it discusses influence of fine-scale structure of turbulence, including its intermittent character, on breakage of drops, bubbles, cells, plant cell aggregates. An important aspect of the mathematical modeling presented in the book is multi-fractal, taking into account the influence of internal intermittency on different phenomena. Key Features Provides detailed descriptions of dispersion processes in turbulent flow, interactions between dispersed entities, and continuous phase in a single volume Includes simulation models and validation experiments for liquid-liquid, gas-liquid, and solid-liquid dispersions in turbulent flows Helps reader learn formulation of mathematical models of breakage or aggregation processes using multifractal theory Explains how to solve different forms of population balance equations Presents a combination of theoretical and engineering approaches to particulate systems along with discussion of related diversity, with exercises and case studies

Pressure Drop and Heat Transfer for Liquid- Liquid Dispersions in Turbulent Flow in a Circular Tube

Pressure Drop and Heat Transfer for Liquid- Liquid Dispersions in Turbulent Flow in a Circular Tube PDF Author: Charles Harry Wright
Publisher:
ISBN:
Category : Heat
Languages : en
Pages : 240

Get Book Here

Book Description


Friction Loss and Heat Transfer Characteristics for Turbulent Flow of Liquid-liquid Dispersions

Friction Loss and Heat Transfer Characteristics for Turbulent Flow of Liquid-liquid Dispersions PDF Author: Robert William Legan
Publisher:
ISBN:
Category : Friction
Languages : en
Pages : 208

Get Book Here

Book Description


Multiphase Particulate Systems in Turbulent Flows

Multiphase Particulate Systems in Turbulent Flows PDF Author: Wioletta Podgórska
Publisher: CRC Press
ISBN: 1351644653
Category : Science
Languages : en
Pages : 384

Get Book Here

Book Description
Multiphase Particulate Systems in Turbulent Flows: Fluid-Liquid and Solid-Liquid Dispersions provides methods necessary to analyze complex particulate systems and related phenomena including physical, chemical and mathematical description of fundamental processes influencing crystal size and shape, suspension rheology, interfacial area of drops and bubbles in extractors and bubble columns. Examples of mathematical model formulation for different processes taking place in such systems is shown. Discussing connections between turbulent mixing mechanisms and precipitation, it discusses influence of fine-scale structure of turbulence, including its intermittent character, on breakage of drops, bubbles, cells, plant cell aggregates. An important aspect of the mathematical modeling presented in the book is multi-fractal, taking into account the influence of internal intermittency on different phenomena. Key Features Provides detailed descriptions of dispersion processes in turbulent flow, interactions between dispersed entities, and continuous phase in a single volume Includes simulation models and validation experiments for liquid-liquid, gas-liquid, and solid-liquid dispersions in turbulent flows Helps reader learn formulation of mathematical models of breakage or aggregation processes using multifractal theory Explains how to solve different forms of population balance equations Presents a combination of theoretical and engineering approaches to particulate systems along with discussion of related diversity, with exercises and case studies

Solid-Liquid Two Phase Flow

Solid-Liquid Two Phase Flow PDF Author: Sümer M. Peker
Publisher: Elsevier
ISBN: 0080553419
Category : Science
Languages : en
Pages : 535

Get Book Here

Book Description
This book is an undertaking of a pioneering work of uniting three vast fields of interfacial phenomena, rheology and fluid mechanics within the framework of solid-liquid two phase flow. No wonder, much finer books will be written in the future as the visionary aims of many nations in combining molecular chemistry, biology, transport and interfacial phenomena for the fundamental understanding of processes and capabilities of new materials will be achieved. Solid-liquid systems where solid particles with a wide range of physical properties, sizes ranging from nano- to macro- scale and concentrations varying from very dilute to highly concentrated, are suspended in liquids of different rheological behavior flowing in various regimes are taken up in this book. Interactions among solid particles in molecular scale are extended to aggregations in the macro scale and related to settling, flow and rheological behavior of the suspensions in a coherent, sequential manner. The classical concept of solid particles is extended to include nanoparticles, colloids, microorganisms and cellular materials. The flow of these systems is investigated under pressure, electrical, magnetic and chemical driving forces in channels ranging from macro-scale pipes to micro channels. Complementary separation and mixing processes are also taken under consideration with micro- and macro-scale counterparts.- Up-to-date including emerging technologies- Coherent, sequential approach- Wide scope: microorganisms, nanoparticles, polymer solutions, minerals, wastewater sludge, etc- All flow conditions, settling and non-settling particles, non-Newtonian flow, etc- Processes accompanying conveying in channels, such as sedimentation, separation, mixing

Turbulence Phenomena

Turbulence Phenomena PDF Author: J.T. Davies
Publisher: Elsevier
ISBN: 0323150934
Category : Technology & Engineering
Languages : en
Pages : 425

Get Book Here

Book Description
Turbulence Phenomena provides an introduction to the eddy transfer of momentum, mass, and heat, specifically at interfaces. The approach of the discussion of the subject matter is based on the eddy mixing length concept of Prandtl. Chapter 1 begins with a discussion on basic concepts regarding liquid flow such as viscosity, turbulent flows, and velocities. As concepts and theories are established, the book then discusses the eddy transfer in fluids, specifically eddy transfer of mass and heat within fluids and eddy transfer near solid surfaces. The concept of eddies in different surfaces is discussed in length all throughout numerous chapters. These different surfaces include clean gas-liquid surfaces, clean liquid-liquid interfaces, and film-covered surfaces. The last few chapters focus on the more detailed discussion on turbulence, such as the concept of spontaneous interfacial turbulence and emulsification and turbulent dispersion and coalescence. The book will be of great use to undergraduate students of chemical engineering, physics, and chemistry.