Author: Steven Percy
Publisher: Springer Science & Business Media
ISBN: 1461492157
Category : Technology & Engineering
Languages : en
Pages : 76
Book Description
This book discusses the history of thermal heat generators and focuses on the potential for these processes using micro-electrical mechanical systems (MEMS) technology for this application. The main focus is on the capture of waste thermal energy for example from industrial processes, transport systems or the human body to generate useable electrical power. A wide range of technologies is discussed, including external combustion heat cycles at MEMS ( Brayton, Stirling and Rankine), Thermoacoustic, Shape Memory Alloys (SMAs), Multiferroics, Thermionics, Pyroelectric, Seebeck, Alkali Metal Thermal, Hydride Heat Engine, Johnson Thermo Electrochemical Converters, and the Johnson Electric Heat Pipe.
Thermal Energy Harvesting for Application at MEMS Scale
Author: Steven Percy
Publisher: Springer Science & Business Media
ISBN: 1461492157
Category : Technology & Engineering
Languages : en
Pages : 76
Book Description
This book discusses the history of thermal heat generators and focuses on the potential for these processes using micro-electrical mechanical systems (MEMS) technology for this application. The main focus is on the capture of waste thermal energy for example from industrial processes, transport systems or the human body to generate useable electrical power. A wide range of technologies is discussed, including external combustion heat cycles at MEMS ( Brayton, Stirling and Rankine), Thermoacoustic, Shape Memory Alloys (SMAs), Multiferroics, Thermionics, Pyroelectric, Seebeck, Alkali Metal Thermal, Hydride Heat Engine, Johnson Thermo Electrochemical Converters, and the Johnson Electric Heat Pipe.
Publisher: Springer Science & Business Media
ISBN: 1461492157
Category : Technology & Engineering
Languages : en
Pages : 76
Book Description
This book discusses the history of thermal heat generators and focuses on the potential for these processes using micro-electrical mechanical systems (MEMS) technology for this application. The main focus is on the capture of waste thermal energy for example from industrial processes, transport systems or the human body to generate useable electrical power. A wide range of technologies is discussed, including external combustion heat cycles at MEMS ( Brayton, Stirling and Rankine), Thermoacoustic, Shape Memory Alloys (SMAs), Multiferroics, Thermionics, Pyroelectric, Seebeck, Alkali Metal Thermal, Hydride Heat Engine, Johnson Thermo Electrochemical Converters, and the Johnson Electric Heat Pipe.
Micro and Nano Energy Harvesting Technologies
Author: Bin Yang
Publisher: Artech House
ISBN: 1608078159
Category : Technology & Engineering
Languages : en
Pages : 305
Book Description
Seeking renewable and clean energies is essential for releasing the heavy reliance on mineral-based energy and remedying the threat of global warming to our environment. In the last decade, explosive growth in research and development efforts devoted to microelectromechanical systems (MEMS) technology and nanowires-related nanotechnology have paved a great foundation for new mechanisms of harvesting mechanical energy at the micro/nano-meter scale. MEMS-based inertial sensors have been the enabler for numerous applications associated with smart phones, tablets, and mobile electronics. This is a valuable reference for all those faced with the challenging problems created by the ever-increasing interest in MEMS and nanotechnology-based energy harvesters and their applications. This book presents fundamental physics, theoretical design, and method of modeling for four mainstream energy harvesting mechanisms -- piezoelectric, electromagnetic, electrostatic, and triboelectric. Readers are provided with a comprehensive technical review and historical view of each mechanism. The authors also present current challenges in energy harvesting technology, technical reviews, design requirements, case studies, along with unique and representative examples of energy harvester applications.
Publisher: Artech House
ISBN: 1608078159
Category : Technology & Engineering
Languages : en
Pages : 305
Book Description
Seeking renewable and clean energies is essential for releasing the heavy reliance on mineral-based energy and remedying the threat of global warming to our environment. In the last decade, explosive growth in research and development efforts devoted to microelectromechanical systems (MEMS) technology and nanowires-related nanotechnology have paved a great foundation for new mechanisms of harvesting mechanical energy at the micro/nano-meter scale. MEMS-based inertial sensors have been the enabler for numerous applications associated with smart phones, tablets, and mobile electronics. This is a valuable reference for all those faced with the challenging problems created by the ever-increasing interest in MEMS and nanotechnology-based energy harvesters and their applications. This book presents fundamental physics, theoretical design, and method of modeling for four mainstream energy harvesting mechanisms -- piezoelectric, electromagnetic, electrostatic, and triboelectric. Readers are provided with a comprehensive technical review and historical view of each mechanism. The authors also present current challenges in energy harvesting technology, technical reviews, design requirements, case studies, along with unique and representative examples of energy harvester applications.
Piezoelectric Energy Harvesting
Author: Alper Erturk
Publisher: John Wiley & Sons
ISBN: 1119991358
Category : Technology & Engineering
Languages : en
Pages : 377
Book Description
The transformation of vibrations into electric energy through the use of piezoelectric devices is an exciting and rapidly developing area of research with a widening range of applications constantly materialising. With Piezoelectric Energy Harvesting, world-leading researchers provide a timely and comprehensive coverage of the electromechanical modelling and applications of piezoelectric energy harvesters. They present principal modelling approaches, synthesizing fundamental material related to mechanical, aerospace, civil, electrical and materials engineering disciplines for vibration-based energy harvesting using piezoelectric transduction. Piezoelectric Energy Harvesting provides the first comprehensive treatment of distributed-parameter electromechanical modelling for piezoelectric energy harvesting with extensive case studies including experimental validations, and is the first book to address modelling of various forms of excitation in piezoelectric energy harvesting, ranging from airflow excitation to moving loads, thus ensuring its relevance to engineers in fields as disparate as aerospace engineering and civil engineering. Coverage includes: Analytical and approximate analytical distributed-parameter electromechanical models with illustrative theoretical case studies as well as extensive experimental validations Several problems of piezoelectric energy harvesting ranging from simple harmonic excitation to random vibrations Details of introducing and modelling piezoelectric coupling for various problems Modelling and exploiting nonlinear dynamics for performance enhancement, supported with experimental verifications Applications ranging from moving load excitation of slender bridges to airflow excitation of aeroelastic sections A review of standard nonlinear energy harvesting circuits with modelling aspects.
Publisher: John Wiley & Sons
ISBN: 1119991358
Category : Technology & Engineering
Languages : en
Pages : 377
Book Description
The transformation of vibrations into electric energy through the use of piezoelectric devices is an exciting and rapidly developing area of research with a widening range of applications constantly materialising. With Piezoelectric Energy Harvesting, world-leading researchers provide a timely and comprehensive coverage of the electromechanical modelling and applications of piezoelectric energy harvesters. They present principal modelling approaches, synthesizing fundamental material related to mechanical, aerospace, civil, electrical and materials engineering disciplines for vibration-based energy harvesting using piezoelectric transduction. Piezoelectric Energy Harvesting provides the first comprehensive treatment of distributed-parameter electromechanical modelling for piezoelectric energy harvesting with extensive case studies including experimental validations, and is the first book to address modelling of various forms of excitation in piezoelectric energy harvesting, ranging from airflow excitation to moving loads, thus ensuring its relevance to engineers in fields as disparate as aerospace engineering and civil engineering. Coverage includes: Analytical and approximate analytical distributed-parameter electromechanical models with illustrative theoretical case studies as well as extensive experimental validations Several problems of piezoelectric energy harvesting ranging from simple harmonic excitation to random vibrations Details of introducing and modelling piezoelectric coupling for various problems Modelling and exploiting nonlinear dynamics for performance enhancement, supported with experimental verifications Applications ranging from moving load excitation of slender bridges to airflow excitation of aeroelastic sections A review of standard nonlinear energy harvesting circuits with modelling aspects.
Micro Energy Harvesting
Author: Danick Briand
Publisher: John Wiley & Sons
ISBN: 3527319026
Category : Technology & Engineering
Languages : en
Pages : 492
Book Description
With its inclusion of the fundamentals, systems and applications, this reference provides readers with the basics of micro energy conversion along with expert knowledge on system electronics and real-life microdevices. The authors address different aspects of energy harvesting at the micro scale with a focus on miniaturized and microfabricated devices. Along the way they provide an overview of the field by compiling knowledge on the design, materials development, device realization and aspects of system integration, covering emerging technologies, as well as applications in power management, energy storage, medicine and low-power system electronics. In addition, they survey the energy harvesting principles based on chemical, thermal, mechanical, as well as hybrid and nanotechnology approaches. In unparalleled detail this volume presents the complete picture -- and a peek into the future -- of micro-powered microsystems.
Publisher: John Wiley & Sons
ISBN: 3527319026
Category : Technology & Engineering
Languages : en
Pages : 492
Book Description
With its inclusion of the fundamentals, systems and applications, this reference provides readers with the basics of micro energy conversion along with expert knowledge on system electronics and real-life microdevices. The authors address different aspects of energy harvesting at the micro scale with a focus on miniaturized and microfabricated devices. Along the way they provide an overview of the field by compiling knowledge on the design, materials development, device realization and aspects of system integration, covering emerging technologies, as well as applications in power management, energy storage, medicine and low-power system electronics. In addition, they survey the energy harvesting principles based on chemical, thermal, mechanical, as well as hybrid and nanotechnology approaches. In unparalleled detail this volume presents the complete picture -- and a peek into the future -- of micro-powered microsystems.
Thermoelectric Energy Conversion
Author: Diana Davila Pineda
Publisher: John Wiley & Sons
ISBN: 3527698132
Category : Technology & Engineering
Languages : en
Pages : 404
Book Description
The latest volume in the well-established AMN series, this ready reference provides an up-to-date, self-contained summary of recent developments in the technologies and systems for thermoelectricity. Following an initial chapter that introduces the fundamentals and principles of thermoelectricity, subsequent chapters discuss the synthesis and integration of various bulk thermoelectric as well as nanostructured materials. The book then goes on to discuss characterization techniques, including various light and mechanic microscopy techniques, while also summarizing applications for thermoelectric materials, such as micro- and nano-thermoelectric generators, wearable electronics and energy conversion devices. The result is a bridge between industry and scientific researchers seeking to develop thermoelectric generators.
Publisher: John Wiley & Sons
ISBN: 3527698132
Category : Technology & Engineering
Languages : en
Pages : 404
Book Description
The latest volume in the well-established AMN series, this ready reference provides an up-to-date, self-contained summary of recent developments in the technologies and systems for thermoelectricity. Following an initial chapter that introduces the fundamentals and principles of thermoelectricity, subsequent chapters discuss the synthesis and integration of various bulk thermoelectric as well as nanostructured materials. The book then goes on to discuss characterization techniques, including various light and mechanic microscopy techniques, while also summarizing applications for thermoelectric materials, such as micro- and nano-thermoelectric generators, wearable electronics and energy conversion devices. The result is a bridge between industry and scientific researchers seeking to develop thermoelectric generators.
Ferroelectric Materials for Energy Applications
Author: Haitao Huang
Publisher: John Wiley & Sons
ISBN: 3527342710
Category : Technology & Engineering
Languages : en
Pages : 384
Book Description
Provides a comprehensive overview of the emerging applications of ferroelectric materials in energy harvesting and storage Conventional ferroelectric materials are normally used in sensors and actuators, memory devices, and field effect transistors, etc. Recent progress in this area showed that ferroelectric materials can harvest energy from multiple sources including mechanical energy, thermal fluctuations, and light. This book gives a complete summary of the novel energy-related applications of ferroelectric materials?and reviews both the recent advances as well as the future perspectives in this field. Beginning with the fundamentals of ferroelectric materials, Ferroelectric Materials for Energy Applications offers in-depth chapter coverage of: piezoelectric energy generation; ferroelectric photovoltaics; organic-inorganic hybrid perovskites for solar energy conversion; ferroelectric ceramics and thin films in electric energy storage; ferroelectric polymer composites in electric energy storage; pyroelectric energy harvesting; ferroelectrics in electrocaloric cooling; ferroelectric in photocatalysis; and first-principles calculations on ferroelectrics for energy applications. -Covers a highly application-oriented subject with great potential for energy conversion and storage applications. -Focused toward a large, interdisciplinary group consisting of material scientists, solid state physicists, engineering scientists, and industrial researchers -Edited by the "father of integrated ferroelectrics" Ferroelectric Materials for Energy Applications is an excellent book for researchers working on ferroelectric materials and energy materials, as well as engineers looking to broaden their view of the field.
Publisher: John Wiley & Sons
ISBN: 3527342710
Category : Technology & Engineering
Languages : en
Pages : 384
Book Description
Provides a comprehensive overview of the emerging applications of ferroelectric materials in energy harvesting and storage Conventional ferroelectric materials are normally used in sensors and actuators, memory devices, and field effect transistors, etc. Recent progress in this area showed that ferroelectric materials can harvest energy from multiple sources including mechanical energy, thermal fluctuations, and light. This book gives a complete summary of the novel energy-related applications of ferroelectric materials?and reviews both the recent advances as well as the future perspectives in this field. Beginning with the fundamentals of ferroelectric materials, Ferroelectric Materials for Energy Applications offers in-depth chapter coverage of: piezoelectric energy generation; ferroelectric photovoltaics; organic-inorganic hybrid perovskites for solar energy conversion; ferroelectric ceramics and thin films in electric energy storage; ferroelectric polymer composites in electric energy storage; pyroelectric energy harvesting; ferroelectrics in electrocaloric cooling; ferroelectric in photocatalysis; and first-principles calculations on ferroelectrics for energy applications. -Covers a highly application-oriented subject with great potential for energy conversion and storage applications. -Focused toward a large, interdisciplinary group consisting of material scientists, solid state physicists, engineering scientists, and industrial researchers -Edited by the "father of integrated ferroelectrics" Ferroelectric Materials for Energy Applications is an excellent book for researchers working on ferroelectric materials and energy materials, as well as engineers looking to broaden their view of the field.
Energy Harvesting and Energy Efficiency
Author: Nicu Bizon
Publisher: Springer
ISBN: 3319498754
Category : Technology & Engineering
Languages : en
Pages : 673
Book Description
This book presents basic and advanced concepts for energy harvesting and energy efficiency, as well as related technologies, methods, and their applications. The book provides up-to-date knowledge and discusses the state-of-the-art equipment and methods used for energy harvesting and energy efficiency, combining theory and practical applications. Containing over 200 illustrations and problems and solutions, the book begins with overview chapters on the status quo in this field. Subsequent chapters introduce readers to advanced concepts and methods. In turn, the final part of the book is dedicated to technical strategies, efficient methods and applications in the field of energy efficiency, which also makes it of interest to technicians in industry. The book tackles problems commonly encountered using basic methods of energy harvesting and energy efficiency, and proposes advanced methods to resolve these issues. All the methods proposed have been validated through simulation and experimental results. These “hot topics” will continue to be of interest to scientists and engineers in future decades and will provide challenges to researchers around the globe as issues of climate change and changing energy policies become more pressing. Here, readers will find all the basic and advanced concepts they need. As such, it offers a valuable, comprehensive guide for all students and practicing engineers who wishing to learn about and work in these fields.
Publisher: Springer
ISBN: 3319498754
Category : Technology & Engineering
Languages : en
Pages : 673
Book Description
This book presents basic and advanced concepts for energy harvesting and energy efficiency, as well as related technologies, methods, and their applications. The book provides up-to-date knowledge and discusses the state-of-the-art equipment and methods used for energy harvesting and energy efficiency, combining theory and practical applications. Containing over 200 illustrations and problems and solutions, the book begins with overview chapters on the status quo in this field. Subsequent chapters introduce readers to advanced concepts and methods. In turn, the final part of the book is dedicated to technical strategies, efficient methods and applications in the field of energy efficiency, which also makes it of interest to technicians in industry. The book tackles problems commonly encountered using basic methods of energy harvesting and energy efficiency, and proposes advanced methods to resolve these issues. All the methods proposed have been validated through simulation and experimental results. These “hot topics” will continue to be of interest to scientists and engineers in future decades and will provide challenges to researchers around the globe as issues of climate change and changing energy policies become more pressing. Here, readers will find all the basic and advanced concepts they need. As such, it offers a valuable, comprehensive guide for all students and practicing engineers who wishing to learn about and work in these fields.
Triboelectric Nanogenerators
Author: Zhong Lin Wang
Publisher: Springer
ISBN: 3319400398
Category : Technology & Engineering
Languages : en
Pages : 537
Book Description
This book introduces an innovative and high-efficiency technology for mechanical energy harvesting. The book covers the history and development of triboelectric nanogenerators, basic structures, working principles, performance characterization, and potential applications. It is divided into three parts: Part A illustrates the fundamental working modes of triboelectric nanogenerators with their prototype structures and theoretical analysis; Part B and Part C introduce two categories of applications, namely self-powered systems and self-powered active sensors. The book will be an ideal guide to scientists and engineers beginning to study triboelectric nanogenerators or wishing to deepen their knowledge of the field. Readers will be able to place the technical details about this technology in context, and acquire the necessary skills to reproduce the experimental setups for fabrication and measurement.
Publisher: Springer
ISBN: 3319400398
Category : Technology & Engineering
Languages : en
Pages : 537
Book Description
This book introduces an innovative and high-efficiency technology for mechanical energy harvesting. The book covers the history and development of triboelectric nanogenerators, basic structures, working principles, performance characterization, and potential applications. It is divided into three parts: Part A illustrates the fundamental working modes of triboelectric nanogenerators with their prototype structures and theoretical analysis; Part B and Part C introduce two categories of applications, namely self-powered systems and self-powered active sensors. The book will be an ideal guide to scientists and engineers beginning to study triboelectric nanogenerators or wishing to deepen their knowledge of the field. Readers will be able to place the technical details about this technology in context, and acquire the necessary skills to reproduce the experimental setups for fabrication and measurement.
Introduction to Materials for Advanced Energy Systems
Author: Colin Tong
Publisher: Springer
ISBN: 3319980025
Category : Technology & Engineering
Languages : en
Pages : 930
Book Description
This first of its kind text enables today’s students to understand current and future energy challenges, to acquire skills for selecting and using materials and manufacturing processes in the design of energy systems, and to develop a cross-functional approach to materials, mechanics, electronics and processes of energy production. While taking economic and regulatory aspects into account, this textbook provides a comprehensive introduction to the range of materials used for advanced energy systems, including fossil, nuclear, solar, bio, wind, geothermal, ocean and hydropower, hydrogen, and nuclear, as well as thermal energy storage and electrochemical storage in fuel cells. A separate chapter is devoted to emerging energy harvesting systems. Integrated coverage includes the application of scientific and engineering principles to materials that enable different types of energy systems. Properties, performance, modeling, fabrication, characterization and application of structural, functional and hybrid materials are described for each energy system. Readers will appreciate the complex relationships among materials selection, optimizing design, and component operating conditions in each energy system. Research and development trends of novel emerging materials for future hybrid energy systems are also considered. Each chapter is basically a self-contained unit, easily enabling instructors to adapt the book for coursework. This textbook is suitable for students in science and engineering who seek to obtain a comprehensive understanding of different energy processes, and how materials enable energy harvesting, conversion, and storage. In setting forth the latest advances and new frontiers of research, the text also serves as a comprehensive reference on energy materials for experienced materials scientists, engineers, and physicists. Includes pedagogical features such as in-depth side bars, worked-out and end-of- chapter exercises, and many references to further reading Provides comprehensive coverage of materials-based solutions for major and emerging energy systems Brings together diverse subject matter by integrating theory with engaging insights
Publisher: Springer
ISBN: 3319980025
Category : Technology & Engineering
Languages : en
Pages : 930
Book Description
This first of its kind text enables today’s students to understand current and future energy challenges, to acquire skills for selecting and using materials and manufacturing processes in the design of energy systems, and to develop a cross-functional approach to materials, mechanics, electronics and processes of energy production. While taking economic and regulatory aspects into account, this textbook provides a comprehensive introduction to the range of materials used for advanced energy systems, including fossil, nuclear, solar, bio, wind, geothermal, ocean and hydropower, hydrogen, and nuclear, as well as thermal energy storage and electrochemical storage in fuel cells. A separate chapter is devoted to emerging energy harvesting systems. Integrated coverage includes the application of scientific and engineering principles to materials that enable different types of energy systems. Properties, performance, modeling, fabrication, characterization and application of structural, functional and hybrid materials are described for each energy system. Readers will appreciate the complex relationships among materials selection, optimizing design, and component operating conditions in each energy system. Research and development trends of novel emerging materials for future hybrid energy systems are also considered. Each chapter is basically a self-contained unit, easily enabling instructors to adapt the book for coursework. This textbook is suitable for students in science and engineering who seek to obtain a comprehensive understanding of different energy processes, and how materials enable energy harvesting, conversion, and storage. In setting forth the latest advances and new frontiers of research, the text also serves as a comprehensive reference on energy materials for experienced materials scientists, engineers, and physicists. Includes pedagogical features such as in-depth side bars, worked-out and end-of- chapter exercises, and many references to further reading Provides comprehensive coverage of materials-based solutions for major and emerging energy systems Brings together diverse subject matter by integrating theory with engaging insights
Green Energy Advances
Author: Diana Enescu
Publisher: Intechopen
ISBN: 1789841992
Category : Science
Languages : en
Pages : 158
Book Description
This book contributes to understanding the development and application of green energy solutions. The term "green energy" is widely used today to indicate sustainable energy sources with zero or minimal environmental and economic impact, obtained from various renewable energy sources. The contents presented in this book deal with different solutions, from small-scale applications (thermoelectric energy harvesting) to energy efficiency in buildings with local renewable energy production (also in critical seismic sites), local energy systems (smart energy management of storage and complex interactions), exploitation of biomasses from agricultural wastes, and voluntary certifications associated with energy trading in large energy systems. These aspects mark a more sustainable evolution of the society with wider green energy usage.
Publisher: Intechopen
ISBN: 1789841992
Category : Science
Languages : en
Pages : 158
Book Description
This book contributes to understanding the development and application of green energy solutions. The term "green energy" is widely used today to indicate sustainable energy sources with zero or minimal environmental and economic impact, obtained from various renewable energy sources. The contents presented in this book deal with different solutions, from small-scale applications (thermoelectric energy harvesting) to energy efficiency in buildings with local renewable energy production (also in critical seismic sites), local energy systems (smart energy management of storage and complex interactions), exploitation of biomasses from agricultural wastes, and voluntary certifications associated with energy trading in large energy systems. These aspects mark a more sustainable evolution of the society with wider green energy usage.