Author: ?ordan Brankov
Publisher: World Scientific
ISBN: 9789810239251
Category : Science
Languages : en
Pages : 468
Book Description
The aim of this book is to familiarise the reader with the rich collection of ideas, methods and results available in the theory of critical phenomena in systems with confined geometry. The existence of universal features of the finite-size effects arising due to highly correlated classical or quantum fluctuations is explained by the finite-size scaling theory. This theory (1) offers an interpretation of experimental results on finite-size effects in real systems; (2) gives the most reliable tool for extrapolation to the thermodynamic limit of data obtained by computer simulations; (3) reveals the intimate mechanism of how the critical singularities build up in the thermodynamic limit; and (4) can be fruitfully used to explain the low-temperature behaviour of quantum critical systems. The exposition is given in a self-contained form which presumes the reader's knowledge only in the framework of standard courses on the theory of phase transitions and critical phenomena. The instructive role of simple models, both classical and quantum, is demonstrated by putting the accent on the derivation of rigorous and exact analytical results.
Theory of Critical Phenomena in Finite-size Systems
Author: ?ordan Brankov
Publisher: World Scientific
ISBN: 9789810239251
Category : Science
Languages : en
Pages : 468
Book Description
The aim of this book is to familiarise the reader with the rich collection of ideas, methods and results available in the theory of critical phenomena in systems with confined geometry. The existence of universal features of the finite-size effects arising due to highly correlated classical or quantum fluctuations is explained by the finite-size scaling theory. This theory (1) offers an interpretation of experimental results on finite-size effects in real systems; (2) gives the most reliable tool for extrapolation to the thermodynamic limit of data obtained by computer simulations; (3) reveals the intimate mechanism of how the critical singularities build up in the thermodynamic limit; and (4) can be fruitfully used to explain the low-temperature behaviour of quantum critical systems. The exposition is given in a self-contained form which presumes the reader's knowledge only in the framework of standard courses on the theory of phase transitions and critical phenomena. The instructive role of simple models, both classical and quantum, is demonstrated by putting the accent on the derivation of rigorous and exact analytical results.
Publisher: World Scientific
ISBN: 9789810239251
Category : Science
Languages : en
Pages : 468
Book Description
The aim of this book is to familiarise the reader with the rich collection of ideas, methods and results available in the theory of critical phenomena in systems with confined geometry. The existence of universal features of the finite-size effects arising due to highly correlated classical or quantum fluctuations is explained by the finite-size scaling theory. This theory (1) offers an interpretation of experimental results on finite-size effects in real systems; (2) gives the most reliable tool for extrapolation to the thermodynamic limit of data obtained by computer simulations; (3) reveals the intimate mechanism of how the critical singularities build up in the thermodynamic limit; and (4) can be fruitfully used to explain the low-temperature behaviour of quantum critical systems. The exposition is given in a self-contained form which presumes the reader's knowledge only in the framework of standard courses on the theory of phase transitions and critical phenomena. The instructive role of simple models, both classical and quantum, is demonstrated by putting the accent on the derivation of rigorous and exact analytical results.
Theory Of Critical Phenomena In Finite-size Systems: Scaling And Quantum Effects
Author: Jordan G Brankov
Publisher: World Scientific
ISBN: 9814494569
Category : Science
Languages : en
Pages : 459
Book Description
The aim of this book is to familiarise the reader with the rich collection of ideas, methods and results available in the theory of critical phenomena in systems with confined geometry. The existence of universal features of the finite-size effects arising due to highly correlated classical or quantum fluctuations is explained by the finite-size scaling theory. This theory (1) offers an interpretation of experimental results on finite-size effects in real systems; (2) gives the most reliable tool for extrapolation to the thermodynamic limit of data obtained by computer simulations; (3) reveals the intimate mechanism of how the critical singularities build up in the thermodynamic limit; and (4) can be fruitfully used to explain the low-temperature behaviour of quantum critical systems.The exposition is given in a self-contained form which presumes the reader's knowledge only in the framework of standard courses on the theory of phase transitions and critical phenomena. The instructive role of simple models, both classical and quantum, is demonstrated by putting the accent on the derivation of rigorous and exact analytical results.
Publisher: World Scientific
ISBN: 9814494569
Category : Science
Languages : en
Pages : 459
Book Description
The aim of this book is to familiarise the reader with the rich collection of ideas, methods and results available in the theory of critical phenomena in systems with confined geometry. The existence of universal features of the finite-size effects arising due to highly correlated classical or quantum fluctuations is explained by the finite-size scaling theory. This theory (1) offers an interpretation of experimental results on finite-size effects in real systems; (2) gives the most reliable tool for extrapolation to the thermodynamic limit of data obtained by computer simulations; (3) reveals the intimate mechanism of how the critical singularities build up in the thermodynamic limit; and (4) can be fruitfully used to explain the low-temperature behaviour of quantum critical systems.The exposition is given in a self-contained form which presumes the reader's knowledge only in the framework of standard courses on the theory of phase transitions and critical phenomena. The instructive role of simple models, both classical and quantum, is demonstrated by putting the accent on the derivation of rigorous and exact analytical results.
Finite-Size Scaling
Author: J. Cardy
Publisher: Elsevier
ISBN: 0444596062
Category : Computers
Languages : en
Pages : 385
Book Description
Over the past few years, finite-size scaling has become an increasingly important tool in studies of critical systems. This is partly due to an increased understanding of finite-size effects by analytical means, and partly due to our ability to treat larger systems with large computers. The aim of this volume was to collect those papers which have been important for this progress and which illustrate novel applications of the method. The emphasis has been placed on relatively recent developments, including the use of the &egr;-expansion and of conformal methods.
Publisher: Elsevier
ISBN: 0444596062
Category : Computers
Languages : en
Pages : 385
Book Description
Over the past few years, finite-size scaling has become an increasingly important tool in studies of critical systems. This is partly due to an increased understanding of finite-size effects by analytical means, and partly due to our ability to treat larger systems with large computers. The aim of this volume was to collect those papers which have been important for this progress and which illustrate novel applications of the method. The emphasis has been placed on relatively recent developments, including the use of the &egr;-expansion and of conformal methods.
The Theory of Critical Phenomena
Author: J. J. Binney
Publisher: Oxford University Press
ISBN: 0191660566
Category : Science
Languages : en
Pages : 477
Book Description
The successful calculation of critical exponents for continuous phase transitions is one of the main achievements of theoretical physics over the last quarter-century. This was achieved through the use of scaling and field-theoretic techniques which have since become standard equipment in many areas of physics, especially quantum field theory. This book provides a thorough introduction to these techniques. Continuous phase transitions are introduced, then the necessary statistical mechanics is summarized, followed by standard models, some exact solutions and techniques for numerical simulations. The real-space renormalization group and mean-field theory are then explained and illustrated. The final chapters cover the Landau-Ginzburg model, from physical motivation, through diagrammatic perturbation theory and renormalization to the renormalization group and the calculation of critical exponents above and below the critical temperature.
Publisher: Oxford University Press
ISBN: 0191660566
Category : Science
Languages : en
Pages : 477
Book Description
The successful calculation of critical exponents for continuous phase transitions is one of the main achievements of theoretical physics over the last quarter-century. This was achieved through the use of scaling and field-theoretic techniques which have since become standard equipment in many areas of physics, especially quantum field theory. This book provides a thorough introduction to these techniques. Continuous phase transitions are introduced, then the necessary statistical mechanics is summarized, followed by standard models, some exact solutions and techniques for numerical simulations. The real-space renormalization group and mean-field theory are then explained and illustrated. The final chapters cover the Landau-Ginzburg model, from physical motivation, through diagrammatic perturbation theory and renormalization to the renormalization group and the calculation of critical exponents above and below the critical temperature.
Conformal Invariance and Critical Phenomena
Author: Malte Henkel
Publisher: Springer Science & Business Media
ISBN: 3662039370
Category : Science
Languages : en
Pages : 433
Book Description
Critical phenomena arise in a wide variety of physical systems. Classi cal examples are the liquid-vapour critical point or the paramagnetic ferromagnetic transition. Further examples include multicomponent fluids and alloys, superfluids, superconductors, polymers and fully developed tur bulence and may even extend to the quark-gluon plasma and the early uni verse as a whole. Early theoretical investigators tried to reduce the problem to a very small number of degrees of freedom, such as the van der Waals equation and mean field approximations, culminating in Landau's general theory of critical phenomena. Nowadays, it is understood that the common ground for all these phenomena lies in the presence of strong fluctuations of infinitely many coupled variables. This was made explicit first through the exact solution of the two-dimensional Ising model by Onsager. Systematic subsequent developments have been leading to the scaling theories of critical phenomena and the renormalization group which allow a precise description of the close neighborhood of the critical point, often in good agreement with experiments. In contrast to the general understanding a century ago, the presence of fluctuations on all length scales at a critical point is emphasized today. This can be briefly summarized by saying that at a critical point a system is scale invariant. In addition, conformal invaTiance permits also a non-uniform, local rescal ing, provided only that angles remain unchanged.
Publisher: Springer Science & Business Media
ISBN: 3662039370
Category : Science
Languages : en
Pages : 433
Book Description
Critical phenomena arise in a wide variety of physical systems. Classi cal examples are the liquid-vapour critical point or the paramagnetic ferromagnetic transition. Further examples include multicomponent fluids and alloys, superfluids, superconductors, polymers and fully developed tur bulence and may even extend to the quark-gluon plasma and the early uni verse as a whole. Early theoretical investigators tried to reduce the problem to a very small number of degrees of freedom, such as the van der Waals equation and mean field approximations, culminating in Landau's general theory of critical phenomena. Nowadays, it is understood that the common ground for all these phenomena lies in the presence of strong fluctuations of infinitely many coupled variables. This was made explicit first through the exact solution of the two-dimensional Ising model by Onsager. Systematic subsequent developments have been leading to the scaling theories of critical phenomena and the renormalization group which allow a precise description of the close neighborhood of the critical point, often in good agreement with experiments. In contrast to the general understanding a century ago, the presence of fluctuations on all length scales at a critical point is emphasized today. This can be briefly summarized by saying that at a critical point a system is scale invariant. In addition, conformal invaTiance permits also a non-uniform, local rescal ing, provided only that angles remain unchanged.
Finite Size Scaling And Numerical Simulation Of Statistical Systems
Author: Vladimir Privman
Publisher: World Scientific
ISBN: 9813208767
Category :
Languages : en
Pages : 530
Book Description
The theory of Finite Size Scaling describes a build-up of the bulk properties when a small system is increased in size. This description is particularly important in strongly correlated systems where critical fluctuations develop with increasing system size, including phase transition points, polymer conformations. Since numerical computer simulations are always done with finite samples, they rely on the Finite Size Scaling theory for data extrapolation and analysis. With the advent of large scale computing in recent years, the use of the size-scaling methods has become increasingly important.
Publisher: World Scientific
ISBN: 9813208767
Category :
Languages : en
Pages : 530
Book Description
The theory of Finite Size Scaling describes a build-up of the bulk properties when a small system is increased in size. This description is particularly important in strongly correlated systems where critical fluctuations develop with increasing system size, including phase transition points, polymer conformations. Since numerical computer simulations are always done with finite samples, they rely on the Finite Size Scaling theory for data extrapolation and analysis. With the advent of large scale computing in recent years, the use of the size-scaling methods has become increasingly important.
Random Walks, Critical Phenomena, and Triviality in Quantum Field Theory
Author: Roberto Fernandez
Publisher: Springer Science & Business Media
ISBN: 3662028662
Category : Science
Languages : en
Pages : 446
Book Description
Simple random walks - or equivalently, sums of independent random vari ables - have long been a standard topic of probability theory and mathemat ical physics. In the 1950s, non-Markovian random-walk models, such as the self-avoiding walk,were introduced into theoretical polymer physics, and gradu ally came to serve as a paradigm for the general theory of critical phenomena. In the past decade, random-walk expansions have evolved into an important tool for the rigorous analysis of critical phenomena in classical spin systems and of the continuum limit in quantum field theory. Among the results obtained by random-walk methods are the proof of triviality of the cp4 quantum field theo ryin space-time dimension d (::::) 4, and the proof of mean-field critical behavior for cp4 and Ising models in space dimension d (::::) 4. The principal goal of the present monograph is to present a detailed review of these developments. It is supplemented by a brief excursion to the theory of random surfaces and various applications thereof. This book has grown out of research carried out by the authors mainly from 1982 until the middle of 1985. Our original intention was to write a research paper. However, the writing of such a paper turned out to be a very slow process, partly because of our geographical separation, partly because each of us was involved in other projects that may have appeared more urgent.
Publisher: Springer Science & Business Media
ISBN: 3662028662
Category : Science
Languages : en
Pages : 446
Book Description
Simple random walks - or equivalently, sums of independent random vari ables - have long been a standard topic of probability theory and mathemat ical physics. In the 1950s, non-Markovian random-walk models, such as the self-avoiding walk,were introduced into theoretical polymer physics, and gradu ally came to serve as a paradigm for the general theory of critical phenomena. In the past decade, random-walk expansions have evolved into an important tool for the rigorous analysis of critical phenomena in classical spin systems and of the continuum limit in quantum field theory. Among the results obtained by random-walk methods are the proof of triviality of the cp4 quantum field theo ryin space-time dimension d (::::) 4, and the proof of mean-field critical behavior for cp4 and Ising models in space dimension d (::::) 4. The principal goal of the present monograph is to present a detailed review of these developments. It is supplemented by a brief excursion to the theory of random surfaces and various applications thereof. This book has grown out of research carried out by the authors mainly from 1982 until the middle of 1985. Our original intention was to write a research paper. However, the writing of such a paper turned out to be a very slow process, partly because of our geographical separation, partly because each of us was involved in other projects that may have appeared more urgent.
Quantum Theory of Finite Systems
Author: Jean-Paul Blaizot
Publisher: Mit Press
ISBN: 9780262022149
Category : Science
Languages : en
Pages : 657
Book Description
This book provides a comprehensive and pedagogical account of the various methods used in the quantum theory of finite systems, including molecular, atomic, nuclear, and particle phenomena. Covering both background material and advanced topics and including nearly 200 problems, Quantum Theory of Finite Systems has been designed to serve primarily as a text and will also prove useful as a reference in research. The first of the book's four parts introduces the basic mathematical apparatus: second quantization, canonical transformations, Wick theorems and the resulting diagram expansions, and oscillator models. The second part presents mean field approximations and the recently developed path integral methods for the quantization of collective modes. Part three develops perturbation theory in terms of both time-dependent Feynman diagrams and time-independent Goldstone diagrams. A fourth part discusses variational methods based on correlated wavefunctions, including spin correlations. The approximation schemes are formulated for fermions and bosons at eigher zero or non-zero temperature. Although the formalism developed applies to both finite and infinite systems, the book stresses those aspects of the theory that are specific to the description of finite systems. Thus special attention is given to mean field approximations, the ensuing broken symmetries, and the associated collective motions such as rotations. Conversely, some specific features of systems with infinite numbers of degrees of freedom (such as the thermodynamic limit, critical phenomena, and the elimination of ultraviolet divergencies) are deliberately omitted. Jean-Paul Blaizot and Georges Ripka are associated with the Centre d'Etudes Nucleaires de Saclay.
Publisher: Mit Press
ISBN: 9780262022149
Category : Science
Languages : en
Pages : 657
Book Description
This book provides a comprehensive and pedagogical account of the various methods used in the quantum theory of finite systems, including molecular, atomic, nuclear, and particle phenomena. Covering both background material and advanced topics and including nearly 200 problems, Quantum Theory of Finite Systems has been designed to serve primarily as a text and will also prove useful as a reference in research. The first of the book's four parts introduces the basic mathematical apparatus: second quantization, canonical transformations, Wick theorems and the resulting diagram expansions, and oscillator models. The second part presents mean field approximations and the recently developed path integral methods for the quantization of collective modes. Part three develops perturbation theory in terms of both time-dependent Feynman diagrams and time-independent Goldstone diagrams. A fourth part discusses variational methods based on correlated wavefunctions, including spin correlations. The approximation schemes are formulated for fermions and bosons at eigher zero or non-zero temperature. Although the formalism developed applies to both finite and infinite systems, the book stresses those aspects of the theory that are specific to the description of finite systems. Thus special attention is given to mean field approximations, the ensuing broken symmetries, and the associated collective motions such as rotations. Conversely, some specific features of systems with infinite numbers of degrees of freedom (such as the thermodynamic limit, critical phenomena, and the elimination of ultraviolet divergencies) are deliberately omitted. Jean-Paul Blaizot and Georges Ripka are associated with the Centre d'Etudes Nucleaires de Saclay.
Elements of Phase Transitions and Critical Phenomena
Author: Hidetoshi Nishimori
Publisher: Oxford University Press
ISBN: 0199577226
Category : Science
Languages : en
Pages : 373
Book Description
As an introductory account of the theory of phase transitions and critical phenomena, this book reflects lectures given by the authors to graduate students at their departments and is thus classroom-tested to help beginners enter the field. Most parts are written as self-contained units and every new concept or calculation is explained in detail without assuming prior knowledge of the subject. The book significantly enhances and revises a Japanese version which is a bestseller in the Japanese market and is considered a standard textbook in the field. It contains new pedagogical presentations of field theory methods, including a chapter on conformal field theory, and various modern developments hard to find in a single textbook on phase transitions. Exercises are presented as the topics develop, with solutions found at the end of the book, making the text useful for self-teaching, as well as for classroom learning.
Publisher: Oxford University Press
ISBN: 0199577226
Category : Science
Languages : en
Pages : 373
Book Description
As an introductory account of the theory of phase transitions and critical phenomena, this book reflects lectures given by the authors to graduate students at their departments and is thus classroom-tested to help beginners enter the field. Most parts are written as self-contained units and every new concept or calculation is explained in detail without assuming prior knowledge of the subject. The book significantly enhances and revises a Japanese version which is a bestseller in the Japanese market and is considered a standard textbook in the field. It contains new pedagogical presentations of field theory methods, including a chapter on conformal field theory, and various modern developments hard to find in a single textbook on phase transitions. Exercises are presented as the topics develop, with solutions found at the end of the book, making the text useful for self-teaching, as well as for classroom learning.
Scaling and Renormalization in Statistical Physics
Author: John Cardy
Publisher: Cambridge University Press
ISBN: 9780521499590
Category : Science
Languages : en
Pages : 264
Book Description
This text provides a thoroughly modern graduate-level introduction to the theory of critical behaviour. It begins with a brief review of phase transitions in simple systems, then goes on to introduce the core ideas of the renormalisation group.
Publisher: Cambridge University Press
ISBN: 9780521499590
Category : Science
Languages : en
Pages : 264
Book Description
This text provides a thoroughly modern graduate-level introduction to the theory of critical behaviour. It begins with a brief review of phase transitions in simple systems, then goes on to introduce the core ideas of the renormalisation group.