Author: L. R. Chapman
Publisher: Elsevier
ISBN: 1483147584
Category : Mathematics
Languages : en
Pages : 407
Book Description
The Process of Learning Mathematics describes the process of learning mathematics and covers topics ranging from the nature of mathematics to the role of intuition and logic in mathematics; the thought processes involved in the teaching of mathematics; reflective intelligence and the use of symbols; and discovery as a way of learning mathematics. Computer-assisted instruction in mathematics is also considered. This book is comprised of 19 chapters and begins with a reflection on the nature of mathematics, followed by a discussion on the importance of intuition and logic in mathematics. The ideas of generalization, structure, approximations, and the evolution of some particular aspect of applied mathematics are then examined from the viewpoint of a teacher. Subsequent chapters deal with schematic learning; motivation and emotional and interpersonal factors; uses of programmed material in British schools and colleges; and structural apparatuses used in teaching mathematics. The Midlands Mathematical Experiment and the Nuffield Foundation Mathematics Teaching Project in Britain are also described. This monograph will be of interest to teachers and students of mathematics.
The Process of Learning Mathematics
Visible Learning for Mathematics, Grades K-12
Author: John Hattie
Publisher: Corwin Press
ISBN: 1506362958
Category : Education
Languages : en
Pages : 209
Book Description
Selected as the Michigan Council of Teachers of Mathematics winter book club book! Rich tasks, collaborative work, number talks, problem-based learning, direct instruction...with so many possible approaches, how do we know which ones work the best? In Visible Learning for Mathematics, six acclaimed educators assert it’s not about which one—it’s about when—and show you how to design high-impact instruction so all students demonstrate more than a year’s worth of mathematics learning for a year spent in school. That’s a high bar, but with the amazing K-12 framework here, you choose the right approach at the right time, depending upon where learners are within three phases of learning: surface, deep, and transfer. This results in "visible" learning because the effect is tangible. The framework is forged out of current research in mathematics combined with John Hattie’s synthesis of more than 15 years of education research involving 300 million students. Chapter by chapter, and equipped with video clips, planning tools, rubrics, and templates, you get the inside track on which instructional strategies to use at each phase of the learning cycle: Surface learning phase: When—through carefully constructed experiences—students explore new concepts and make connections to procedural skills and vocabulary that give shape to developing conceptual understandings. Deep learning phase: When—through the solving of rich high-cognitive tasks and rigorous discussion—students make connections among conceptual ideas, form mathematical generalizations, and apply and practice procedural skills with fluency. Transfer phase: When students can independently think through more complex mathematics, and can plan, investigate, and elaborate as they apply what they know to new mathematical situations. To equip students for higher-level mathematics learning, we have to be clear about where students are, where they need to go, and what it looks like when they get there. Visible Learning for Math brings about powerful, precision teaching for K-12 through intentionally designed guided, collaborative, and independent learning.
Publisher: Corwin Press
ISBN: 1506362958
Category : Education
Languages : en
Pages : 209
Book Description
Selected as the Michigan Council of Teachers of Mathematics winter book club book! Rich tasks, collaborative work, number talks, problem-based learning, direct instruction...with so many possible approaches, how do we know which ones work the best? In Visible Learning for Mathematics, six acclaimed educators assert it’s not about which one—it’s about when—and show you how to design high-impact instruction so all students demonstrate more than a year’s worth of mathematics learning for a year spent in school. That’s a high bar, but with the amazing K-12 framework here, you choose the right approach at the right time, depending upon where learners are within three phases of learning: surface, deep, and transfer. This results in "visible" learning because the effect is tangible. The framework is forged out of current research in mathematics combined with John Hattie’s synthesis of more than 15 years of education research involving 300 million students. Chapter by chapter, and equipped with video clips, planning tools, rubrics, and templates, you get the inside track on which instructional strategies to use at each phase of the learning cycle: Surface learning phase: When—through carefully constructed experiences—students explore new concepts and make connections to procedural skills and vocabulary that give shape to developing conceptual understandings. Deep learning phase: When—through the solving of rich high-cognitive tasks and rigorous discussion—students make connections among conceptual ideas, form mathematical generalizations, and apply and practice procedural skills with fluency. Transfer phase: When students can independently think through more complex mathematics, and can plan, investigate, and elaborate as they apply what they know to new mathematical situations. To equip students for higher-level mathematics learning, we have to be clear about where students are, where they need to go, and what it looks like when they get there. Visible Learning for Math brings about powerful, precision teaching for K-12 through intentionally designed guided, collaborative, and independent learning.
The Six Stages in the Process of Learning Mathematics
Author: Zoltan Paul Dienes
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 54
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 54
Book Description
Helping Children Learn Mathematics
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309131987
Category : Education
Languages : en
Pages : 53
Book Description
Results from national and international assessments indicate that school children in the United States are not learning mathematics well enough. Many students cannot correctly apply computational algorithms to solve problems. Their understanding and use of decimals and fractions are especially weak. Indeed, helping all children succeed in mathematics is an imperative national goal. However, for our youth to succeed, we need to change how we're teaching this discipline. Helping Children Learn Mathematics provides comprehensive and reliable information that will guide efforts to improve school mathematics from pre-kindergarten through eighth grade. The authors explain the five strands of mathematical proficiency and discuss the major changes that need to be made in mathematics instruction, instructional materials, assessments, teacher education, and the broader educational system and answers some of the frequently asked questions when it comes to mathematics instruction. The book concludes by providing recommended actions for parents and caregivers, teachers, administrators, and policy makers, stressing the importance that everyone work together to ensure a mathematically literate society.
Publisher: National Academies Press
ISBN: 0309131987
Category : Education
Languages : en
Pages : 53
Book Description
Results from national and international assessments indicate that school children in the United States are not learning mathematics well enough. Many students cannot correctly apply computational algorithms to solve problems. Their understanding and use of decimals and fractions are especially weak. Indeed, helping all children succeed in mathematics is an imperative national goal. However, for our youth to succeed, we need to change how we're teaching this discipline. Helping Children Learn Mathematics provides comprehensive and reliable information that will guide efforts to improve school mathematics from pre-kindergarten through eighth grade. The authors explain the five strands of mathematical proficiency and discuss the major changes that need to be made in mathematics instruction, instructional materials, assessments, teacher education, and the broader educational system and answers some of the frequently asked questions when it comes to mathematics instruction. The book concludes by providing recommended actions for parents and caregivers, teachers, administrators, and policy makers, stressing the importance that everyone work together to ensure a mathematically literate society.
Building Thinking Classrooms in Mathematics, Grades K-12
Author: Peter Liljedahl
Publisher: Corwin Press
ISBN: 1544374844
Category : Education
Languages : en
Pages : 454
Book Description
A thinking student is an engaged student Teachers often find it difficult to implement lessons that help students go beyond rote memorization and repetitive calculations. In fact, institutional norms and habits that permeate all classrooms can actually be enabling "non-thinking" student behavior. Sparked by observing teachers struggle to implement rich mathematics tasks to engage students in deep thinking, Peter Liljedahl has translated his 15 years of research into this practical guide on how to move toward a thinking classroom. Building Thinking Classrooms in Mathematics, Grades K–12 helps teachers implement 14 optimal practices for thinking that create an ideal setting for deep mathematics learning to occur. This guide Provides the what, why, and how of each practice and answers teachers’ most frequently asked questions Includes firsthand accounts of how these practices foster thinking through teacher and student interviews and student work samples Offers a plethora of macro moves, micro moves, and rich tasks to get started Organizes the 14 practices into four toolkits that can be implemented in order and built on throughout the year When combined, these unique research-based practices create the optimal conditions for learner-centered, student-owned deep mathematical thinking and learning, and have the power to transform mathematics classrooms like never before.
Publisher: Corwin Press
ISBN: 1544374844
Category : Education
Languages : en
Pages : 454
Book Description
A thinking student is an engaged student Teachers often find it difficult to implement lessons that help students go beyond rote memorization and repetitive calculations. In fact, institutional norms and habits that permeate all classrooms can actually be enabling "non-thinking" student behavior. Sparked by observing teachers struggle to implement rich mathematics tasks to engage students in deep thinking, Peter Liljedahl has translated his 15 years of research into this practical guide on how to move toward a thinking classroom. Building Thinking Classrooms in Mathematics, Grades K–12 helps teachers implement 14 optimal practices for thinking that create an ideal setting for deep mathematics learning to occur. This guide Provides the what, why, and how of each practice and answers teachers’ most frequently asked questions Includes firsthand accounts of how these practices foster thinking through teacher and student interviews and student work samples Offers a plethora of macro moves, micro moves, and rich tasks to get started Organizes the 14 practices into four toolkits that can be implemented in order and built on throughout the year When combined, these unique research-based practices create the optimal conditions for learner-centered, student-owned deep mathematical thinking and learning, and have the power to transform mathematics classrooms like never before.
Mathematics Learning in Early Childhood
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309147433
Category : Education
Languages : en
Pages : 399
Book Description
Early childhood mathematics is vitally important for young children's present and future educational success. Research demonstrates that virtually all young children have the capability to learn and become competent in mathematics. Furthermore, young children enjoy their early informal experiences with mathematics. Unfortunately, many children's potential in mathematics is not fully realized, especially those children who are economically disadvantaged. This is due, in part, to a lack of opportunities to learn mathematics in early childhood settings or through everyday experiences in the home and in their communities. Improvements in early childhood mathematics education can provide young children with the foundation for school success. Relying on a comprehensive review of the research, Mathematics Learning in Early Childhood lays out the critical areas that should be the focus of young children's early mathematics education, explores the extent to which they are currently being incorporated in early childhood settings, and identifies the changes needed to improve the quality of mathematics experiences for young children. This book serves as a call to action to improve the state of early childhood mathematics. It will be especially useful for policy makers and practitioners-those who work directly with children and their families in shaping the policies that affect the education of young children.
Publisher: National Academies Press
ISBN: 0309147433
Category : Education
Languages : en
Pages : 399
Book Description
Early childhood mathematics is vitally important for young children's present and future educational success. Research demonstrates that virtually all young children have the capability to learn and become competent in mathematics. Furthermore, young children enjoy their early informal experiences with mathematics. Unfortunately, many children's potential in mathematics is not fully realized, especially those children who are economically disadvantaged. This is due, in part, to a lack of opportunities to learn mathematics in early childhood settings or through everyday experiences in the home and in their communities. Improvements in early childhood mathematics education can provide young children with the foundation for school success. Relying on a comprehensive review of the research, Mathematics Learning in Early Childhood lays out the critical areas that should be the focus of young children's early mathematics education, explores the extent to which they are currently being incorporated in early childhood settings, and identifies the changes needed to improve the quality of mathematics experiences for young children. This book serves as a call to action to improve the state of early childhood mathematics. It will be especially useful for policy makers and practitioners-those who work directly with children and their families in shaping the policies that affect the education of young children.
New Mathematics Education Research and Practice
Author: Jürgen Maasz
Publisher: Sense Publishers
ISBN: 9077874747
Category : Mathematics
Languages : en
Pages : 323
Book Description
Mathematics education research has blossomed into many different areas which we can see in the programmes of the ICME conferences as well as in the various survey articles in the Handbooks. However, all of these lines of research are trying to grapple with a common problem, the complexity of the process of learning mathematics. Although our knowledge of the process is more extensive and deeper despite the fragmented nature of research in this area, there is still a need to overcome this fragmentation and to see learning as one process with different aspects. To overcome this fragmentation, this book identifies six themes: (1) mathematics, culture and society, (2) the structure of mathematics and its influence on the learning process, (3) mathematics learning as a cognitive process, (4) mathematics learning as a social process, (5) affective conditions of the mathematics learning process, (6) new technologies and mathematics learning. This book is addressed to all researchers in mathematic education. It gives an orientation and overview by addressing some carefully chosen questions on what is going on and what are the main results and questions what are important books or papers if further information is needed.
Publisher: Sense Publishers
ISBN: 9077874747
Category : Mathematics
Languages : en
Pages : 323
Book Description
Mathematics education research has blossomed into many different areas which we can see in the programmes of the ICME conferences as well as in the various survey articles in the Handbooks. However, all of these lines of research are trying to grapple with a common problem, the complexity of the process of learning mathematics. Although our knowledge of the process is more extensive and deeper despite the fragmented nature of research in this area, there is still a need to overcome this fragmentation and to see learning as one process with different aspects. To overcome this fragmentation, this book identifies six themes: (1) mathematics, culture and society, (2) the structure of mathematics and its influence on the learning process, (3) mathematics learning as a cognitive process, (4) mathematics learning as a social process, (5) affective conditions of the mathematics learning process, (6) new technologies and mathematics learning. This book is addressed to all researchers in mathematic education. It gives an orientation and overview by addressing some carefully chosen questions on what is going on and what are the main results and questions what are important books or papers if further information is needed.
Semiotics as a Tool for Learning Mathematics
Author: Adalira Sáenz-Ludlow
Publisher: Springer
ISBN: 9463003371
Category : Education
Languages : en
Pages : 224
Book Description
Semiotics as a Tool for Learning Mathematics is a collection of ten theoretical and empirical chapters, from researchers all over the world, who are interested in semiotic notions and their practical uses in mathematics classrooms. Collectively, they present a semiotic contribution to enhance pedagogical aspects both for the teaching of school mathematics and for the preparation of pre-service teachers. This enhancement involves the use of diagrams to visualize implicit or explicit mathematical relations and the use of mathematical discourse to facilitate the emergence of inferential reasoning in the process of argumentation. It will also facilitate the construction of proofs and solutions of mathematical problems as well as the progressive construction of mathematical conceptions that, eventually, will approximate the concept(s) encoded in mathematical symbols. These symbols hinge not only of mental operations but also on indexical and iconic aspects; aspects which often are not taken into account when working on the meaning of mathematical symbols. For such an enhancement to happen, it is necessary to transform basic notions of semiotic theories to make them usable for mathematics education. In addition, it is also necessary to back theoretical claims with empirical data. This anthology attempts to deal with such a conjunction. Overall, this book can be used as a theoretical basis for further semiotic considerations as well as for the design of different ways of teaching mathematical concepts.
Publisher: Springer
ISBN: 9463003371
Category : Education
Languages : en
Pages : 224
Book Description
Semiotics as a Tool for Learning Mathematics is a collection of ten theoretical and empirical chapters, from researchers all over the world, who are interested in semiotic notions and their practical uses in mathematics classrooms. Collectively, they present a semiotic contribution to enhance pedagogical aspects both for the teaching of school mathematics and for the preparation of pre-service teachers. This enhancement involves the use of diagrams to visualize implicit or explicit mathematical relations and the use of mathematical discourse to facilitate the emergence of inferential reasoning in the process of argumentation. It will also facilitate the construction of proofs and solutions of mathematical problems as well as the progressive construction of mathematical conceptions that, eventually, will approximate the concept(s) encoded in mathematical symbols. These symbols hinge not only of mental operations but also on indexical and iconic aspects; aspects which often are not taken into account when working on the meaning of mathematical symbols. For such an enhancement to happen, it is necessary to transform basic notions of semiotic theories to make them usable for mathematics education. In addition, it is also necessary to back theoretical claims with empirical data. This anthology attempts to deal with such a conjunction. Overall, this book can be used as a theoretical basis for further semiotic considerations as well as for the design of different ways of teaching mathematical concepts.
The Process of Learning Mathematics
Author: L. R. Chapman
Publisher: Pergamon
ISBN:
Category : Mathematics
Languages : en
Pages : 416
Book Description
The Process of Learning Mathematics describes the process of learning mathematics and covers topics ranging from the nature of mathematics to the role of intuition and logic in mathematics; the thought processes involved in the teaching of mathematics; reflective intelligence and the use of symbols; and discovery as a way of learning mathematics. Computer-assisted instruction in mathematics is also considered. This book is comprised of 19 chapters and begins with a reflection on the nature of mathematics, followed by a discussion on the importance of intuition and logic in mathematics. The ide ...
Publisher: Pergamon
ISBN:
Category : Mathematics
Languages : en
Pages : 416
Book Description
The Process of Learning Mathematics describes the process of learning mathematics and covers topics ranging from the nature of mathematics to the role of intuition and logic in mathematics; the thought processes involved in the teaching of mathematics; reflective intelligence and the use of symbols; and discovery as a way of learning mathematics. Computer-assisted instruction in mathematics is also considered. This book is comprised of 19 chapters and begins with a reflection on the nature of mathematics, followed by a discussion on the importance of intuition and logic in mathematics. The ide ...
Making Sense of Mathematics for Teaching High School
Author: Edward C. Nolan
Publisher: Solution Tree Press
ISBN: 1942496494
Category : Education
Languages : en
Pages : 231
Book Description
Develop a deep understanding of mathematics by grasping the context and purpose behind various strategies. This user-friendly resource presents high school teachers with a logical progression of pedagogical actions, classroom norms, and collaborative teacher team efforts to increase their knowledge and improve mathematics instruction. Explore strategies and techniques to effectively learn and teach significant mathematics concepts and provide all students with the precise, accurate information they need to achieve academic success. Combine student understanding of functions and algebraic concepts so that they can better decipher the world. Benefits Dig deep into mathematical modeling and reasoning to improve as both a learner and teacher of mathematics. Explore how to develop, select, or modify mathematics tasks in order to balance cognitive demand and engage students. Discover the three important norms to uphold in all mathematics classrooms. Learn to apply the tasks, questioning, and evidence (TQE) process to ensure mathematics instruction is focused, coherent, and rigorous. Gain clarity about the most productive progression of mathematical teaching and learning for high school. Watch short videos that show what classrooms that are developing mathematical understanding should look like. Contents Introduction Equations and Functions Structure of Equations Geometry Types of Functions Function Modeling Statistics and Probability Epilogue: Next Steps Appendix: Weight Loss Study Data References Index
Publisher: Solution Tree Press
ISBN: 1942496494
Category : Education
Languages : en
Pages : 231
Book Description
Develop a deep understanding of mathematics by grasping the context and purpose behind various strategies. This user-friendly resource presents high school teachers with a logical progression of pedagogical actions, classroom norms, and collaborative teacher team efforts to increase their knowledge and improve mathematics instruction. Explore strategies and techniques to effectively learn and teach significant mathematics concepts and provide all students with the precise, accurate information they need to achieve academic success. Combine student understanding of functions and algebraic concepts so that they can better decipher the world. Benefits Dig deep into mathematical modeling and reasoning to improve as both a learner and teacher of mathematics. Explore how to develop, select, or modify mathematics tasks in order to balance cognitive demand and engage students. Discover the three important norms to uphold in all mathematics classrooms. Learn to apply the tasks, questioning, and evidence (TQE) process to ensure mathematics instruction is focused, coherent, and rigorous. Gain clarity about the most productive progression of mathematical teaching and learning for high school. Watch short videos that show what classrooms that are developing mathematical understanding should look like. Contents Introduction Equations and Functions Structure of Equations Geometry Types of Functions Function Modeling Statistics and Probability Epilogue: Next Steps Appendix: Weight Loss Study Data References Index