The Genus Fields of Algebraic Number Fields

The Genus Fields of Algebraic Number Fields PDF Author: M. Ishida
Publisher: Springer
ISBN: 3540375538
Category : Mathematics
Languages : en
Pages : 123

Get Book Here

Book Description
a

The Genus Fields of Algebraic Number Fields

The Genus Fields of Algebraic Number Fields PDF Author: M. Ishida
Publisher: Springer
ISBN: 3540375538
Category : Mathematics
Languages : en
Pages : 123

Get Book Here

Book Description
a

The Genus Fields of Algebraic Number Fields

The Genus Fields of Algebraic Number Fields PDF Author: Makoto Ishida
Publisher: Springer
ISBN: 9780387080000
Category : Algebraic fields
Languages : en
Pages : 115

Get Book Here

Book Description


Algebraic Number Fields

Algebraic Number Fields PDF Author: Gerald J. Janusz
Publisher: American Mathematical Soc.
ISBN: 0821804294
Category : Mathematics
Languages : en
Pages : 288

Get Book Here

Book Description
This text presents the basic information about finite dimensional extension fields of the rational numbers, algebraic number fields, and the rings of algebraic integers in them. The important theorems regarding the units of the ring of integers and the class group are proved and illustrated with many examples given in detail. The completion of an algebraic number field at a valuation is discussed in detail and then used to provide economical proofs of global results. The book contains many concrete examples illustrating the computation of class groups, class numbers, and Hilbert class fields. Exercises are provided to indicate applications of the general theory.

The Theory of Algebraic Number Fields

The Theory of Algebraic Number Fields PDF Author: David Hilbert
Publisher: Springer Science & Business Media
ISBN: 3662035456
Category : Mathematics
Languages : en
Pages : 360

Get Book Here

Book Description
A translation of Hilberts "Theorie der algebraischen Zahlkörper" best known as the "Zahlbericht", first published in 1897, in which he provides an elegantly integrated overview of the development of algebraic number theory up to the end of the nineteenth century. The Zahlbericht also provided a firm foundation for further research in the theory, and can be seen as the starting point for all twentieth century investigations into the subject, as well as reciprocity laws and class field theory. This English edition further contains an introduction by F. Lemmermeyer and N. Schappacher.

Basic Number Theory.

Basic Number Theory. PDF Author: Andre Weil
Publisher: Springer Science & Business Media
ISBN: 3662059789
Category : Mathematics
Languages : en
Pages : 332

Get Book Here

Book Description
Itpzf}JlOV, li~oxov uoq>ZUJlCJ. 7:WV Al(JX., llpoj1. AE(Jj1. The first part of this volume is based on a course taught at Princeton University in 1961-62; at that time, an excellent set ofnotes was prepared by David Cantor, and it was originally my intention to make these notes available to the mathematical public with only quite minor changes. Then, among some old papers of mine, I accidentally came across a long-forgotten manuscript by ChevaIley, of pre-war vintage (forgotten, that is to say, both by me and by its author) which, to my taste at least, seemed to have aged very welt It contained abrief but essentially com plete account of the main features of c1assfield theory, both local and global; and it soon became obvious that the usefulness of the intended volume would be greatly enhanced if I inc1uded such a treatment of this topic. It had to be expanded, in accordance with my own plans, but its outline could be preserved without much change. In fact, I have adhered to it rather c10sely at some critical points.

Number Fields

Number Fields PDF Author: Daniel A. Marcus
Publisher: Springer
ISBN: 3319902334
Category : Mathematics
Languages : en
Pages : 213

Get Book Here

Book Description
Requiring no more than a basic knowledge of abstract algebra, this text presents the mathematics of number fields in a straightforward, pedestrian manner. It therefore avoids local methods and presents proofs in a way that highlights the important parts of the arguments. Readers are assumed to be able to fill in the details, which in many places are left as exercises.

Algebraic Curves over a Finite Field

Algebraic Curves over a Finite Field PDF Author: J. W. P. Hirschfeld
Publisher: Princeton University Press
ISBN: 1400847419
Category : Mathematics
Languages : en
Pages : 717

Get Book Here

Book Description
This book provides an accessible and self-contained introduction to the theory of algebraic curves over a finite field, a subject that has been of fundamental importance to mathematics for many years and that has essential applications in areas such as finite geometry, number theory, error-correcting codes, and cryptology. Unlike other books, this one emphasizes the algebraic geometry rather than the function field approach to algebraic curves. The authors begin by developing the general theory of curves over any field, highlighting peculiarities occurring for positive characteristic and requiring of the reader only basic knowledge of algebra and geometry. The special properties that a curve over a finite field can have are then discussed. The geometrical theory of linear series is used to find estimates for the number of rational points on a curve, following the theory of Stöhr and Voloch. The approach of Hasse and Weil via zeta functions is explained, and then attention turns to more advanced results: a state-of-the-art introduction to maximal curves over finite fields is provided; a comprehensive account is given of the automorphism group of a curve; and some applications to coding theory and finite geometry are described. The book includes many examples and exercises. It is an indispensable resource for researchers and the ideal textbook for graduate students.

The Story of Algebraic Numbers in the First Half of the 20th Century

The Story of Algebraic Numbers in the First Half of the 20th Century PDF Author: Władysław Narkiewicz
Publisher: Springer
ISBN: 3030037541
Category : Mathematics
Languages : en
Pages : 448

Get Book Here

Book Description
The book is aimed at people working in number theory or at least interested in this part of mathematics. It presents the development of the theory of algebraic numbers up to the year 1950 and contains a rather complete bibliography of that period. The reader will get information about results obtained before 1950. It is hoped that this may be helpful in preventing rediscoveries of old results, and might also inspire the reader to look at the work done earlier, which may hide some ideas which could be applied in contemporary research.

Rational Points on Varieties

Rational Points on Varieties PDF Author: Bjorn Poonen
Publisher: American Mathematical Soc.
ISBN: 1470437732
Category : Mathematics
Languages : en
Pages : 358

Get Book Here

Book Description
This book is motivated by the problem of determining the set of rational points on a variety, but its true goal is to equip readers with a broad range of tools essential for current research in algebraic geometry and number theory. The book is unconventional in that it provides concise accounts of many topics instead of a comprehensive account of just one—this is intentionally designed to bring readers up to speed rapidly. Among the topics included are Brauer groups, faithfully flat descent, algebraic groups, torsors, étale and fppf cohomology, the Weil conjectures, and the Brauer-Manin and descent obstructions. A final chapter applies all these to study the arithmetic of surfaces. The down-to-earth explanations and the over 100 exercises make the book suitable for use as a graduate-level textbook, but even experts will appreciate having a single source covering many aspects of geometry over an unrestricted ground field and containing some material that cannot be found elsewhere.

Elementary and Analytic Theory of Algebraic Numbers

Elementary and Analytic Theory of Algebraic Numbers PDF Author: Wladyslaw Narkiewicz
Publisher: Springer Science & Business Media
ISBN: 3662070014
Category : Mathematics
Languages : en
Pages : 712

Get Book Here

Book Description
This book details the classical part of the theory of algebraic number theory, excluding class-field theory and its consequences. Coverage includes: ideal theory in rings of algebraic integers, p-adic fields and their finite extensions, ideles and adeles, zeta-functions, distribution of prime ideals, Abelian fields, the class-number of quadratic fields, and factorization problems. The book also features exercises and a list of open problems.