Author: Junuthula Narasimha Reddy
Publisher:
ISBN: 9780071244732
Category : Finite element method
Languages : en
Pages : 766
Book Description
The book retains its strong conceptual approach, clearly examining the mathematical underpinnings of FEM, and providing a general approach of engineering application areas.Known for its detailed, carefully selected example problems and extensive selection of homework problems, the author has comprehensively covered a wide range of engineering areas making the book approriate for all engineering majors, and underscores the wide range of use FEM has in the professional world
An Introduction to the Finite Element Method
Author: Junuthula Narasimha Reddy
Publisher:
ISBN: 9780071244732
Category : Finite element method
Languages : en
Pages : 766
Book Description
The book retains its strong conceptual approach, clearly examining the mathematical underpinnings of FEM, and providing a general approach of engineering application areas.Known for its detailed, carefully selected example problems and extensive selection of homework problems, the author has comprehensively covered a wide range of engineering areas making the book approriate for all engineering majors, and underscores the wide range of use FEM has in the professional world
Publisher:
ISBN: 9780071244732
Category : Finite element method
Languages : en
Pages : 766
Book Description
The book retains its strong conceptual approach, clearly examining the mathematical underpinnings of FEM, and providing a general approach of engineering application areas.Known for its detailed, carefully selected example problems and extensive selection of homework problems, the author has comprehensively covered a wide range of engineering areas making the book approriate for all engineering majors, and underscores the wide range of use FEM has in the professional world
The Finite Element Method in Heat Transfer and Fluid Dynamics, Second Edition
Author: J. N. Reddy
Publisher: CRC Press
ISBN: 9780849323553
Category : Science
Languages : en
Pages : 496
Book Description
The numerical simulation of fluid mechanics and heat transfer problems is now a standard part of engineering practice. The widespread availability of capable computing hardware has led to an increased demand for computer simulations of products and processes during their engineering design and manufacturing phases. The range of fluid mechanics and heat transfer applications of finite element analysis has become quite remarkable, with complex, realistic simulations being carried out on a routine basis. The award-winning first edition of The Finite Element Method in Heat Transfer and Fluid Dynamics brought this powerful methodology to those interested in applying it to the significant class of problems dealing with heat conduction, incompressible viscous flows, and convection heat transfer. The Second Edition of this bestselling text continues to provide the academic community and industry with up-to-date, authoritative information on the use of the finite element method in the study of fluid mechanics and heat transfer. Extensively revised and thoroughly updated, new and expanded material includes discussions on difficult boundary conditions, contact and bulk nodes, change of phase, weighted-integral statements and weak forms, chemically reactive systems, stabilized methods, free surface problems, and much more. The Finite Element Method in Heat Transfer and Fluid Dynamics offers students a pragmatic treatment that views numerical computation as a means to an end and does not dwell on theory or proof. Mastering its contents brings a firm understanding of the basic methodology, competence in using existing simulation software, and the ability to develop some simpler, special purpose computer codes.
Publisher: CRC Press
ISBN: 9780849323553
Category : Science
Languages : en
Pages : 496
Book Description
The numerical simulation of fluid mechanics and heat transfer problems is now a standard part of engineering practice. The widespread availability of capable computing hardware has led to an increased demand for computer simulations of products and processes during their engineering design and manufacturing phases. The range of fluid mechanics and heat transfer applications of finite element analysis has become quite remarkable, with complex, realistic simulations being carried out on a routine basis. The award-winning first edition of The Finite Element Method in Heat Transfer and Fluid Dynamics brought this powerful methodology to those interested in applying it to the significant class of problems dealing with heat conduction, incompressible viscous flows, and convection heat transfer. The Second Edition of this bestselling text continues to provide the academic community and industry with up-to-date, authoritative information on the use of the finite element method in the study of fluid mechanics and heat transfer. Extensively revised and thoroughly updated, new and expanded material includes discussions on difficult boundary conditions, contact and bulk nodes, change of phase, weighted-integral statements and weak forms, chemically reactive systems, stabilized methods, free surface problems, and much more. The Finite Element Method in Heat Transfer and Fluid Dynamics offers students a pragmatic treatment that views numerical computation as a means to an end and does not dwell on theory or proof. Mastering its contents brings a firm understanding of the basic methodology, competence in using existing simulation software, and the ability to develop some simpler, special purpose computer codes.
Fundamentals of the Finite Element Method for Heat and Fluid Flow
Author: Roland W. Lewis
Publisher: John Wiley and Sons
ISBN: 0470346388
Category : Science
Languages : en
Pages : 357
Book Description
Heat transfer is the area of engineering science which describes the energy transport between material bodies due to a difference in temperature. The three different modes of heat transport are conduction, convection and radiation. In most problems, these three modes exist simultaneously. However, the significance of these modes depends on the problems studied and often, insignificant modes are neglected. Very often books published on Computational Fluid Dynamics using the Finite Element Method give very little or no significance to thermal or heat transfer problems. From the research point of view, it is important to explain the handling of various types of heat transfer problems with different types of complex boundary conditions. Problems with slow fluid motion and heat transfer can be difficult problems to handle. Therefore, the complexity of combined fluid flow and heat transfer problems should not be underestimated and should be dealt with carefully. This book: Is ideal for teaching senior undergraduates the fundamentals of how to use the Finite Element Method to solve heat transfer and fluid dynamics problems Explains how to solve various heat transfer problems with different types of boundary conditions Uses recent computational methods and codes to handle complex fluid motion and heat transfer problems Includes a large number of examples and exercises on heat transfer problems In an era of parallel computing, computational efficiency and easy to handle codes play a major part. Bearing all these points in mind, the topics covered on combined flow and heat transfer in this book will be an asset for practising engineers and postgraduate students. Other topics of interest for the heat transfer community, such as heat exchangers and radiation heat transfer, are also included.
Publisher: John Wiley and Sons
ISBN: 0470346388
Category : Science
Languages : en
Pages : 357
Book Description
Heat transfer is the area of engineering science which describes the energy transport between material bodies due to a difference in temperature. The three different modes of heat transport are conduction, convection and radiation. In most problems, these three modes exist simultaneously. However, the significance of these modes depends on the problems studied and often, insignificant modes are neglected. Very often books published on Computational Fluid Dynamics using the Finite Element Method give very little or no significance to thermal or heat transfer problems. From the research point of view, it is important to explain the handling of various types of heat transfer problems with different types of complex boundary conditions. Problems with slow fluid motion and heat transfer can be difficult problems to handle. Therefore, the complexity of combined fluid flow and heat transfer problems should not be underestimated and should be dealt with carefully. This book: Is ideal for teaching senior undergraduates the fundamentals of how to use the Finite Element Method to solve heat transfer and fluid dynamics problems Explains how to solve various heat transfer problems with different types of boundary conditions Uses recent computational methods and codes to handle complex fluid motion and heat transfer problems Includes a large number of examples and exercises on heat transfer problems In an era of parallel computing, computational efficiency and easy to handle codes play a major part. Bearing all these points in mind, the topics covered on combined flow and heat transfer in this book will be an asset for practising engineers and postgraduate students. Other topics of interest for the heat transfer community, such as heat exchangers and radiation heat transfer, are also included.
Finite Element Multidisciplinary Analysis
Author: Kajal K. Gupta
Publisher: AIAA
ISBN: 9781600860539
Category : Finite element method
Languages : en
Pages : 458
Book Description
Annotation This book fills a gap within the finite element literature by addressing the challenges and developments in multidiscipli-nary analysis. Current developments include disciplines of structural mechanics, heat transfer, fluid mechanics, controls engineering and propulsion technology, and their interaction as encountered in many practical problems in aeronautical, aerospace, and mechanical engineering, among others. These topics are reflected in the 15 chapter titles of the book. Numerical problems are provided to illustrate the applicability of the techniques. Exercises may be solved either manually or by using suitable computer software. A version of the multidisciplinary analysis program STARS is available from the author. As a textbook, the book is useful at the senior undergraduate or graduate level. The practicing engineer will find it invaluable for solving full-scale practical problems.
Publisher: AIAA
ISBN: 9781600860539
Category : Finite element method
Languages : en
Pages : 458
Book Description
Annotation This book fills a gap within the finite element literature by addressing the challenges and developments in multidiscipli-nary analysis. Current developments include disciplines of structural mechanics, heat transfer, fluid mechanics, controls engineering and propulsion technology, and their interaction as encountered in many practical problems in aeronautical, aerospace, and mechanical engineering, among others. These topics are reflected in the 15 chapter titles of the book. Numerical problems are provided to illustrate the applicability of the techniques. Exercises may be solved either manually or by using suitable computer software. A version of the multidisciplinary analysis program STARS is available from the author. As a textbook, the book is useful at the senior undergraduate or graduate level. The practicing engineer will find it invaluable for solving full-scale practical problems.
Finite Element Simulations Using ANSYS
Author: Esam M. Alawadhi
Publisher: CRC Press
ISBN: 1482261987
Category : Science
Languages : en
Pages : 429
Book Description
Uses a Step-By-Step Technique Directed with Guided Problems and Relevant Screen Shots Simulation use is on the rise, and more practicing professionals are depending on the reliability of software to help them tackle real-world mechanical engineering problems. Finite Element Simulations Using ANSYS, Second Edition offers a basic understanding of the
Publisher: CRC Press
ISBN: 1482261987
Category : Science
Languages : en
Pages : 429
Book Description
Uses a Step-By-Step Technique Directed with Guided Problems and Relevant Screen Shots Simulation use is on the rise, and more practicing professionals are depending on the reliability of software to help them tackle real-world mechanical engineering problems. Finite Element Simulations Using ANSYS, Second Edition offers a basic understanding of the
The Finite Element Method in Heat Transfer and Fluid Dynamics, Third Edition
Author: J. N. Reddy
Publisher: CRC Press
ISBN: 1420085980
Category : Science
Languages : en
Pages : 515
Book Description
As Computational Fluid Dynamics (CFD) and Computational Heat Transfer (CHT) evolve and become increasingly important in standard engineering design and analysis practice, users require a solid understanding of mechanics and numerical methods to make optimal use of available software. The Finite Element Method in Heat Transfer and Fluid Dynamics, Third Edition illustrates what a user must know to ensure the optimal application of computational procedures—particularly the Finite Element Method (FEM)—to important problems associated with heat conduction, incompressible viscous flows, and convection heat transfer. This book follows the tradition of the bestselling previous editions, noted for their concise explanation and powerful presentation of useful methodology tailored for use in simulating CFD and CHT. The authors update research developments while retaining the previous editions’ key material and popular style in regard to text organization, equation numbering, references, and symbols. This updated third edition features new or extended coverage of: Coupled problems and parallel processing Mathematical preliminaries and low-speed compressible flows Mode superposition methods and a more detailed account of radiation solution methods Variational multi-scale methods (VMM) and least-squares finite element models (LSFEM) Application of the finite element method to non-isothermal flows Formulation of low-speed, compressible flows With its presentation of realistic, applied examples of FEM in thermal and fluid design analysis, this proven masterwork is an invaluable tool for mastering basic methodology, competently using existing simulation software, and developing simpler special-purpose computer codes. It remains one of the very best resources for understanding numerical methods used in the study of fluid mechanics and heat transfer phenomena.
Publisher: CRC Press
ISBN: 1420085980
Category : Science
Languages : en
Pages : 515
Book Description
As Computational Fluid Dynamics (CFD) and Computational Heat Transfer (CHT) evolve and become increasingly important in standard engineering design and analysis practice, users require a solid understanding of mechanics and numerical methods to make optimal use of available software. The Finite Element Method in Heat Transfer and Fluid Dynamics, Third Edition illustrates what a user must know to ensure the optimal application of computational procedures—particularly the Finite Element Method (FEM)—to important problems associated with heat conduction, incompressible viscous flows, and convection heat transfer. This book follows the tradition of the bestselling previous editions, noted for their concise explanation and powerful presentation of useful methodology tailored for use in simulating CFD and CHT. The authors update research developments while retaining the previous editions’ key material and popular style in regard to text organization, equation numbering, references, and symbols. This updated third edition features new or extended coverage of: Coupled problems and parallel processing Mathematical preliminaries and low-speed compressible flows Mode superposition methods and a more detailed account of radiation solution methods Variational multi-scale methods (VMM) and least-squares finite element models (LSFEM) Application of the finite element method to non-isothermal flows Formulation of low-speed, compressible flows With its presentation of realistic, applied examples of FEM in thermal and fluid design analysis, this proven masterwork is an invaluable tool for mastering basic methodology, competently using existing simulation software, and developing simpler special-purpose computer codes. It remains one of the very best resources for understanding numerical methods used in the study of fluid mechanics and heat transfer phenomena.
The Finite Element Method
Author: Darrell W. Pepper
Publisher: Taylor & Francis
ISBN: 0203942353
Category : Technology & Engineering
Languages : en
Pages : 326
Book Description
This much-anticipated second edition introduces the fundamentals of the finite element method featuring clear-cut examples and an applications-oriented approach. Using the transport equation for heat transfer as the foundation for the governing equations, this new edition demonstrates the versatility of the method for a wide range of applications, including structural analysis and fluid flow. Much attention is given to the development of the discrete set of algebraic equations, beginning with simple one-dimensional problems that can be solved by inspection, continuing to two- and three-dimensional elements, and ending with three chapters describing applications. The increased number of example problems per chapter helps build an understanding of the method to define and organize required initial and boundary condition data for specific problems. In addition to exercises that can be worked out manually, this new edition refers to user-friendly computer codes for solving one-, two-, and three-dimensional problems. Among the first FEM textbooks to include finite element software, the book contains a website with access to an even more comprehensive list of finite element software written in FEMLAB, MAPLE, MathCad, MATLAB, FORTRAN, C++, and JAVA - the most popular programming languages. This textbook is valuable for senior level undergraduates in mechanical, aeronautical, electrical, chemical, and civil engineering. Useful for short courses and home-study learning, the book can also serve as an introduction for first-year graduate students new to finite element coursework and as a refresher for industry professionals. The book is a perfect lead-in to Intermediate Finite Element Method: Fluid Flow and Heat and Transfer Applications (Taylor & Francis, 1999, Hb 1560323094).
Publisher: Taylor & Francis
ISBN: 0203942353
Category : Technology & Engineering
Languages : en
Pages : 326
Book Description
This much-anticipated second edition introduces the fundamentals of the finite element method featuring clear-cut examples and an applications-oriented approach. Using the transport equation for heat transfer as the foundation for the governing equations, this new edition demonstrates the versatility of the method for a wide range of applications, including structural analysis and fluid flow. Much attention is given to the development of the discrete set of algebraic equations, beginning with simple one-dimensional problems that can be solved by inspection, continuing to two- and three-dimensional elements, and ending with three chapters describing applications. The increased number of example problems per chapter helps build an understanding of the method to define and organize required initial and boundary condition data for specific problems. In addition to exercises that can be worked out manually, this new edition refers to user-friendly computer codes for solving one-, two-, and three-dimensional problems. Among the first FEM textbooks to include finite element software, the book contains a website with access to an even more comprehensive list of finite element software written in FEMLAB, MAPLE, MathCad, MATLAB, FORTRAN, C++, and JAVA - the most popular programming languages. This textbook is valuable for senior level undergraduates in mechanical, aeronautical, electrical, chemical, and civil engineering. Useful for short courses and home-study learning, the book can also serve as an introduction for first-year graduate students new to finite element coursework and as a refresher for industry professionals. The book is a perfect lead-in to Intermediate Finite Element Method: Fluid Flow and Heat and Transfer Applications (Taylor & Francis, 1999, Hb 1560323094).
Computational Fluid Dynamics
Author: T. J. Chung
Publisher: Cambridge University Press
ISBN: 1139493299
Category : Technology & Engineering
Languages : en
Pages :
Book Description
The second edition of Computational Fluid Dynamics represents a significant improvement from the first edition. However, the original idea of including all computational fluid dynamics methods (FDM, FEM, FVM); all mesh generation schemes; and physical applications to turbulence, combustion, acoustics, radiative heat transfer, multiphase flow, electromagnetic flow, and general relativity is still maintained. The second edition includes a new section on preconditioning for EBE-GMRES and a complete revision of the section on flowfield-dependent variation methods, which demonstrates more detailed computational processes and includes additional example problems. For those instructors desiring a textbook that contains homework assignments, a variety of problems for FDM, FEM and FVM are included in an appendix. To facilitate students and practitioners intending to develop a large-scale computer code, an example of FORTRAN code capable of solving compressible, incompressible, viscous, inviscid, 1D, 2D and 3D for all speed regimes using the flowfield-dependent variation method is made available.
Publisher: Cambridge University Press
ISBN: 1139493299
Category : Technology & Engineering
Languages : en
Pages :
Book Description
The second edition of Computational Fluid Dynamics represents a significant improvement from the first edition. However, the original idea of including all computational fluid dynamics methods (FDM, FEM, FVM); all mesh generation schemes; and physical applications to turbulence, combustion, acoustics, radiative heat transfer, multiphase flow, electromagnetic flow, and general relativity is still maintained. The second edition includes a new section on preconditioning for EBE-GMRES and a complete revision of the section on flowfield-dependent variation methods, which demonstrates more detailed computational processes and includes additional example problems. For those instructors desiring a textbook that contains homework assignments, a variety of problems for FDM, FEM and FVM are included in an appendix. To facilitate students and practitioners intending to develop a large-scale computer code, an example of FORTRAN code capable of solving compressible, incompressible, viscous, inviscid, 1D, 2D and 3D for all speed regimes using the flowfield-dependent variation method is made available.
Finite Element Procedures
Author: Klaus-Jürgen Bathe
Publisher:
ISBN:
Category : Computers
Languages : en
Pages : 1066
Book Description
BASIC APPROACH: Comprehensive -- this text explores the "full range" of finite element methods used in engineering practice for actual applications in computer-aided design. It provides not only an introduction to finite element methods and the commonality in the various techniques, but explores state-of-the-art methods as well -- with a focus on what are deemed to become "classical techniques" -- procedures that will be "standard and authoritative" for finite element analysis for years to come. FEATURES: presents in sufficient depth and breadth elementary concepts AND advanced techniques in statics, dynamics, solids, fluids, linear and nonlinear analysis. emphasizes both the physical and mathematical characteristics of procedures. presents some important mathematical conditions on finite element procedures. contains an abundance of worked-out examples and various complete program listings. includes many exercises/projects that often require the use of a computer program.
Publisher:
ISBN:
Category : Computers
Languages : en
Pages : 1066
Book Description
BASIC APPROACH: Comprehensive -- this text explores the "full range" of finite element methods used in engineering practice for actual applications in computer-aided design. It provides not only an introduction to finite element methods and the commonality in the various techniques, but explores state-of-the-art methods as well -- with a focus on what are deemed to become "classical techniques" -- procedures that will be "standard and authoritative" for finite element analysis for years to come. FEATURES: presents in sufficient depth and breadth elementary concepts AND advanced techniques in statics, dynamics, solids, fluids, linear and nonlinear analysis. emphasizes both the physical and mathematical characteristics of procedures. presents some important mathematical conditions on finite element procedures. contains an abundance of worked-out examples and various complete program listings. includes many exercises/projects that often require the use of a computer program.
Fundamentals of the Finite Element Method for Heat and Mass Transfer
Author: Perumal Nithiarasu
Publisher: John Wiley & Sons
ISBN: 1118535448
Category : Science
Languages : en
Pages : 464
Book Description
Fundamentals of the Finite Element Method for Heat and Mass Transfer, Second Edition is a comprehensively updated new edition and is a unique book on the application of the finite element method to heat and mass transfer. • Addresses fundamentals, applications and computer implementation • Educational computer codes are freely available to download, modify and use • Includes a large number of worked examples and exercises • Fills the gap between learning and research
Publisher: John Wiley & Sons
ISBN: 1118535448
Category : Science
Languages : en
Pages : 464
Book Description
Fundamentals of the Finite Element Method for Heat and Mass Transfer, Second Edition is a comprehensively updated new edition and is a unique book on the application of the finite element method to heat and mass transfer. • Addresses fundamentals, applications and computer implementation • Educational computer codes are freely available to download, modify and use • Includes a large number of worked examples and exercises • Fills the gap between learning and research