Author: Allison Jaynes
Publisher: Elsevier
ISBN: 0128133996
Category : Science
Languages : en
Pages : 346
Book Description
The Dynamic Loss of Earth's Radiation Belts: From Loss in the Magnetosphere to Particle Precipitation in the Atmosphere presents a timely review of data from various explorative missions, including the Van Allen Probes, the Magnetospheric Multiscale Mission (which aims to determine magnetopause losses), the completion of four BARREL balloon campaigns, and several CubeSat missions focusing on precipitation losses. This is the first book in the area to include a focus on loss, and not just acceleration and radial transport. Bringing together two communities, the book includes contributions from experts with knowledge in both precipitation mechanisms and the effects on the atmosphere. There is a direct link between what gets lost in the magnetospheric radiation environment and the energy deposited in the layers of our atmosphere. Very recently, NASA's Living With a Star program identified a new, targeted research topic that addresses this question, highlighting the timeliness of this precise science. The Dynamic Loss of Earth's Radiation Belts brings together scientists from the space and atmospheric science communities to examine both the causes and effects of particle loss in the magnetosphere. - Examines both the causes and effects of particle loss in the magnetosphere from multiple perspectives - Presents interdisciplinary content that bridges the gap, through communication and collaboration, between the magnetospheric and atmospheric communities - Fills a gap in the literature by focusing on loss in the radiation belt, which is especially timely based on data from the Van Allen Probes, the Magnetospheric Multiscale Mission, and other projects - Includes contributions from various experts in the field that is organized and collated by a clear-and-consistent editorial team
The Dynamic Loss of Earth's Radiation Belts
The Van Allen Probes Mission
Author: Nicola Fox
Publisher: Springer
ISBN: 9781489978707
Category : Science
Languages : en
Pages : 0
Book Description
Documents the science, the mission, the spacecraft and the instrumentation on a unique NASA mission to study the Earth’s dynamic, dangerous and fascinating Van Allen radiation belts that surround the planet This collection of articles provides broad and detailed information about NASA’s Van Allen Probes (formerly known as the Radiation Belt Storm Probes) twin-spacecraft Earth-orbiting mission. The mission has the objective of achieving predictive understanding of the dynamic, intense, energetic, dangerous, and presently unpredictable belts of energetic particles that are magnetically trapped in Earth’s space environment above the atmosphere. It documents the science of the radiation belts and the societal benefits of achieving predictive understanding. Detailed information is provided about the Van Allen Probes mission design, the spacecraft, the science investigations, and the onboard instrumentation that must all work together to make unprecedented measurements within a most unforgiving environment, the core of Earth’s most intense radiation regions. This volume is aimed at graduate students and researchers active in space science, solar-terrestrial interactions and studies of the upper atmosphere. Originally published in Space Science Reviews, Vol. 179/1-4, 2013.
Publisher: Springer
ISBN: 9781489978707
Category : Science
Languages : en
Pages : 0
Book Description
Documents the science, the mission, the spacecraft and the instrumentation on a unique NASA mission to study the Earth’s dynamic, dangerous and fascinating Van Allen radiation belts that surround the planet This collection of articles provides broad and detailed information about NASA’s Van Allen Probes (formerly known as the Radiation Belt Storm Probes) twin-spacecraft Earth-orbiting mission. The mission has the objective of achieving predictive understanding of the dynamic, intense, energetic, dangerous, and presently unpredictable belts of energetic particles that are magnetically trapped in Earth’s space environment above the atmosphere. It documents the science of the radiation belts and the societal benefits of achieving predictive understanding. Detailed information is provided about the Van Allen Probes mission design, the spacecraft, the science investigations, and the onboard instrumentation that must all work together to make unprecedented measurements within a most unforgiving environment, the core of Earth’s most intense radiation regions. This volume is aimed at graduate students and researchers active in space science, solar-terrestrial interactions and studies of the upper atmosphere. Originally published in Space Science Reviews, Vol. 179/1-4, 2013.
Dayside Magnetosphere Interactions
Author: Qiugang Zong
Publisher: John Wiley & Sons
ISBN: 1119509629
Category : Science
Languages : en
Pages : 324
Book Description
Exploring the processes and phenomena of Earth's dayside magnetosphere Energy and momentum transfer, initially taking place at the dayside magnetopause, is responsible for a variety of phenomenon that we can measure on the ground. Data obtained from observations of Earth’s dayside magnetosphere increases our knowledge of the processes by which solar wind mass, momentum, and energy enter the magnetosphere. Dayside Magnetosphere Interactions outlines the physics and processes of dayside magnetospheric phenomena, the role of solar wind in generating ultra-low frequency waves, and solar wind-magnetosphere-ionosphere coupling. Volume highlights include: Phenomena across different temporal and spatial scales Discussions on dayside aurora, plume dynamics, and related dayside reconnection Results from spacecraft observations, ground-based observations, and simulations Discoveries from the Magnetospheric Multiscale Mission and Van Allen Probes era Exploration of foreshock, bow shock, magnetosheath, magnetopause, and cusps Examination of similar processes occurring around other planets The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals. Find out more about this book from this Q&A with the editors
Publisher: John Wiley & Sons
ISBN: 1119509629
Category : Science
Languages : en
Pages : 324
Book Description
Exploring the processes and phenomena of Earth's dayside magnetosphere Energy and momentum transfer, initially taking place at the dayside magnetopause, is responsible for a variety of phenomenon that we can measure on the ground. Data obtained from observations of Earth’s dayside magnetosphere increases our knowledge of the processes by which solar wind mass, momentum, and energy enter the magnetosphere. Dayside Magnetosphere Interactions outlines the physics and processes of dayside magnetospheric phenomena, the role of solar wind in generating ultra-low frequency waves, and solar wind-magnetosphere-ionosphere coupling. Volume highlights include: Phenomena across different temporal and spatial scales Discussions on dayside aurora, plume dynamics, and related dayside reconnection Results from spacecraft observations, ground-based observations, and simulations Discoveries from the Magnetospheric Multiscale Mission and Van Allen Probes era Exploration of foreshock, bow shock, magnetosheath, magnetopause, and cusps Examination of similar processes occurring around other planets The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals. Find out more about this book from this Q&A with the editors
Dynamics of the Earth's Radiation Belts and Inner Magnetosphere
Author: Danny Summers
Publisher: John Wiley & Sons
ISBN: 1118704371
Category : Science
Languages : en
Pages : 782
Book Description
Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 199. Dynamics of the Earth's Radiation Belts and Inner Magnetosphere draws together current knowledge of the radiation belts prior to the launch of Radiation Belt Storm Probes (RPSP) and other imminent space missions, making this volume timely and unique. The volume will serve as a useful benchmark at this exciting and pivotal period in radiation belt research in advance of the new discoveries that the RPSP mission will surely bring. Highlights include the following: a review of the current state of the art of radiation belt science; a complete and up-to-date account of the wave-particle interactions that control the dynamical acceleration and loss processes of particles in the Earth's radiation belts and inner magnetosphere; a discussion emphasizing the importance of the cross-energy coupling of the particle populations of the radiation belts, ring current, and plasmasphere in controlling the dynamics of the inner magnetosphere; an outline of the design and operation of future satellite missions whose objectives are to discover the dominant physical processes that control the dynamics of the Earth's radiation belts and to advance our level of understanding of radiation belt dynamics ideally to the point of predictability; and an examination of the current state of knowledge of Earth's radiation belts from past and current spacecraft missions to the inner magnetosphere. Dynamics of the Earth's Radiation Belts and Inner Magnetosphere will be a useful reference work for the specialist researcher, the student, and the general reader. In addition, the volume could be used as a supplementary text in any graduate-level course in space physics in which radiation belt physics is featured.
Publisher: John Wiley & Sons
ISBN: 1118704371
Category : Science
Languages : en
Pages : 782
Book Description
Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 199. Dynamics of the Earth's Radiation Belts and Inner Magnetosphere draws together current knowledge of the radiation belts prior to the launch of Radiation Belt Storm Probes (RPSP) and other imminent space missions, making this volume timely and unique. The volume will serve as a useful benchmark at this exciting and pivotal period in radiation belt research in advance of the new discoveries that the RPSP mission will surely bring. Highlights include the following: a review of the current state of the art of radiation belt science; a complete and up-to-date account of the wave-particle interactions that control the dynamical acceleration and loss processes of particles in the Earth's radiation belts and inner magnetosphere; a discussion emphasizing the importance of the cross-energy coupling of the particle populations of the radiation belts, ring current, and plasmasphere in controlling the dynamics of the inner magnetosphere; an outline of the design and operation of future satellite missions whose objectives are to discover the dominant physical processes that control the dynamics of the Earth's radiation belts and to advance our level of understanding of radiation belt dynamics ideally to the point of predictability; and an examination of the current state of knowledge of Earth's radiation belts from past and current spacecraft missions to the inner magnetosphere. Dynamics of the Earth's Radiation Belts and Inner Magnetosphere will be a useful reference work for the specialist researcher, the student, and the general reader. In addition, the volume could be used as a supplementary text in any graduate-level course in space physics in which radiation belt physics is featured.
Space Physics and Aeronomy, Magnetospheres in the Solar System
Author: Romain Maggiolo
Publisher: John Wiley & Sons
ISBN: 1119507529
Category : Science
Languages : de
Pages : 61
Book Description
An overview of current knowledge and future research directions in magnetospheric physics In the six decades since the term 'magnetosphere' was first introduced, much has been theorized and discovered about the magnetized space surrounding each of the bodies in our solar system. Each magnetosphere is unique yet behaves according to universal physical processes. Magnetospheres in the Solar System brings together contributions from experimentalists, theoreticians, and numerical modelers to present an overview of diverse magnetospheres, from the mini-magnetospheres of Mercury to the giant planetary magnetospheres of Jupiter and Saturn. Volume highlights include: Concise history of magnetospheres, basic principles, and equations Overview of the fundamental processes that govern magnetospheric physics Tools and techniques used to investigate magnetospheric processes Special focus on Earth’s magnetosphere and its dynamics Coverage of planetary magnetic fields and magnetospheres throughout the solar system Identification of future research directions in magnetospheric physics The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals. Find out more about the Space Physics and Aeronomy collection in this Q&A with the Editors in Chief
Publisher: John Wiley & Sons
ISBN: 1119507529
Category : Science
Languages : de
Pages : 61
Book Description
An overview of current knowledge and future research directions in magnetospheric physics In the six decades since the term 'magnetosphere' was first introduced, much has been theorized and discovered about the magnetized space surrounding each of the bodies in our solar system. Each magnetosphere is unique yet behaves according to universal physical processes. Magnetospheres in the Solar System brings together contributions from experimentalists, theoreticians, and numerical modelers to present an overview of diverse magnetospheres, from the mini-magnetospheres of Mercury to the giant planetary magnetospheres of Jupiter and Saturn. Volume highlights include: Concise history of magnetospheres, basic principles, and equations Overview of the fundamental processes that govern magnetospheric physics Tools and techniques used to investigate magnetospheric processes Special focus on Earth’s magnetosphere and its dynamics Coverage of planetary magnetic fields and magnetospheres throughout the solar system Identification of future research directions in magnetospheric physics The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals. Find out more about the Space Physics and Aeronomy collection in this Q&A with the Editors in Chief
The THEMIS Mission
Author: James L. Burch
Publisher: Springer Science & Business Media
ISBN: 0387898204
Category : Science
Languages : en
Pages : 575
Book Description
J.L. Burch·V. Angelopoulos Originally published in the journal Space Science Reviews, Volume 141, Nos 1–4, 1–3. DOI: 10.1007/s11214-008-9474-5 © Springer Science+Business Media B.V. 2008 The Earth, like all the other planets, is continuously bombarded by the solar wind, which is variable on many time scales owing to its connection to the activity of the Sun. But the Earth is unique among planets because its atmosphere, magnetic eld, and rotation rates are each signi cant, though not dominant, players in the formation of its magnetosphere and its reaction to solar-wind inputs. An intriguing fact is that no matter what the time scale of solar-wind variations, the Earth’s response has a de nite pattern lasting a few hours. Known as a magnetospheric substorm, the response involves a build-up, a crash, and a recovery. The build-up (known as the growth phase) occurs because of an interlinking of the geom- netic eld and the solar-wind magnetic eld known as magnetic reconnection, which leads to storage of increasing amounts of magnetic energy and stress in the tail of the mag- tosphere and lasts about a half hour. The crash (known as the expansion phase) occurs when the increased magnetic energy and stresses are impulsively relieved, the current system that supports the stretched out magnetic tail is diverted into the ionosphere, and bright, dynamic displays of the aurora appear in the upper atmosphere. The expansion and subsequent rec- ery phases result from a second magnetic reconnection event that decouples the solar-wind and geomagnetic elds.
Publisher: Springer Science & Business Media
ISBN: 0387898204
Category : Science
Languages : en
Pages : 575
Book Description
J.L. Burch·V. Angelopoulos Originally published in the journal Space Science Reviews, Volume 141, Nos 1–4, 1–3. DOI: 10.1007/s11214-008-9474-5 © Springer Science+Business Media B.V. 2008 The Earth, like all the other planets, is continuously bombarded by the solar wind, which is variable on many time scales owing to its connection to the activity of the Sun. But the Earth is unique among planets because its atmosphere, magnetic eld, and rotation rates are each signi cant, though not dominant, players in the formation of its magnetosphere and its reaction to solar-wind inputs. An intriguing fact is that no matter what the time scale of solar-wind variations, the Earth’s response has a de nite pattern lasting a few hours. Known as a magnetospheric substorm, the response involves a build-up, a crash, and a recovery. The build-up (known as the growth phase) occurs because of an interlinking of the geom- netic eld and the solar-wind magnetic eld known as magnetic reconnection, which leads to storage of increasing amounts of magnetic energy and stress in the tail of the mag- tosphere and lasts about a half hour. The crash (known as the expansion phase) occurs when the increased magnetic energy and stresses are impulsively relieved, the current system that supports the stretched out magnetic tail is diverted into the ionosphere, and bright, dynamic displays of the aurora appear in the upper atmosphere. The expansion and subsequent rec- ery phases result from a second magnetic reconnection event that decouples the solar-wind and geomagnetic elds.
Space Storms and Space Weather Hazards
Author: I.A. Daglis
Publisher: Springer Science & Business Media
ISBN: 940100983X
Category : Science
Languages : en
Pages : 485
Book Description
Space storms, the manifestation of bad weather in space, have a number of physical effects in the near-Earth environment: acceleration of charged particles in space, intensification of electric currents in space and on the ground, impressive aurora displays, and global magnetic disturbances on the Earth's surface. Space weather has been defined as `conditions on the Sun and in the solar wind, magnetosphere, ionosphere, and atmosphere that can influence the performance and reliability of space- and ground-based technological systems and can endanger human life'. The 19 chapters of this book, written by some of the foremost experts on the topic, present the most recent developments in space storm physics and related technological issues, such as malfunction of satellites, communication and navigation systems, and electric power distribution grids. Readership: researchers, teachers and graduate students in space physics, astronomy, geomagnetism, space technology, electric power and communication technology, and non-specialist physicists and engineers. As recommended in the United Nations Space & Atmospheric Science Education Curriculum booklet. Please find it amongst classics such as T.J.M. Boyd, J.J. Sanderson, J.K. Hargreaves and M.C. Kelly etc.
Publisher: Springer Science & Business Media
ISBN: 940100983X
Category : Science
Languages : en
Pages : 485
Book Description
Space storms, the manifestation of bad weather in space, have a number of physical effects in the near-Earth environment: acceleration of charged particles in space, intensification of electric currents in space and on the ground, impressive aurora displays, and global magnetic disturbances on the Earth's surface. Space weather has been defined as `conditions on the Sun and in the solar wind, magnetosphere, ionosphere, and atmosphere that can influence the performance and reliability of space- and ground-based technological systems and can endanger human life'. The 19 chapters of this book, written by some of the foremost experts on the topic, present the most recent developments in space storm physics and related technological issues, such as malfunction of satellites, communication and navigation systems, and electric power distribution grids. Readership: researchers, teachers and graduate students in space physics, astronomy, geomagnetism, space technology, electric power and communication technology, and non-specialist physicists and engineers. As recommended in the United Nations Space & Atmospheric Science Education Curriculum booklet. Please find it amongst classics such as T.J.M. Boyd, J.J. Sanderson, J.K. Hargreaves and M.C. Kelly etc.
Ring Current Investigations
Author: Vania K. Jordanova
Publisher: Elsevier
ISBN: 0128155728
Category : Science
Languages : en
Pages : 334
Book Description
Ring Current Investigations offers a comprehensive description of ring current dynamics in the Earth's magnetosphere as part of the coupled magnetosphere-ionosphere system. In order to help researchers develop a deeper understanding of the fundamental physics of geomagnetic storms, it includes a detailed description of energetic charged particles injection, trapping, and loss. It reviews historical and recent advances in observations, measurements, theory and simulations of the inner magnetosphere and its coupling to the ionosphere and other surrounding plasma populations. In addition, it compares the physics of ring currents at other strongly magnetized planets in the solar system, specifically Jupiter, Saturn, Uranus and Neptune, with the ring current system at Earth. Providing a description of the most important space weather effects driven by inner magnetospheric energetic particles during geomagnetic storms and present capabilities for their nowcast and forecast, Ring Current Investigations is an important reference for researchers in geophysics and space science, especially related to plasma physics, the ionosphere and magnetosphere, solar-terrestrial relations, and spacecraft anomalies. - Includes an appendix with links to downloadable video clips, illustrating features of ring current and geomagnetic storm dynamics - Provides overview of existing state-of-the-art numerical models and links for open-source code downloads - Offers guidance on how to develop numerical models within the context of the present-day understanding
Publisher: Elsevier
ISBN: 0128155728
Category : Science
Languages : en
Pages : 334
Book Description
Ring Current Investigations offers a comprehensive description of ring current dynamics in the Earth's magnetosphere as part of the coupled magnetosphere-ionosphere system. In order to help researchers develop a deeper understanding of the fundamental physics of geomagnetic storms, it includes a detailed description of energetic charged particles injection, trapping, and loss. It reviews historical and recent advances in observations, measurements, theory and simulations of the inner magnetosphere and its coupling to the ionosphere and other surrounding plasma populations. In addition, it compares the physics of ring currents at other strongly magnetized planets in the solar system, specifically Jupiter, Saturn, Uranus and Neptune, with the ring current system at Earth. Providing a description of the most important space weather effects driven by inner magnetospheric energetic particles during geomagnetic storms and present capabilities for their nowcast and forecast, Ring Current Investigations is an important reference for researchers in geophysics and space science, especially related to plasma physics, the ionosphere and magnetosphere, solar-terrestrial relations, and spacecraft anomalies. - Includes an appendix with links to downloadable video clips, illustrating features of ring current and geomagnetic storm dynamics - Provides overview of existing state-of-the-art numerical models and links for open-source code downloads - Offers guidance on how to develop numerical models within the context of the present-day understanding
Radiation and the International Space Station
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309068851
Category : Science
Languages : en
Pages : 96
Book Description
A major objective of the International Space Station is learning how to cope with the inherent risks of human spaceflightâ€"how to live and work in space for extended periods. The construction of the station itself provides the first opportunity for doing so. Prominent among the challenges associated with ISS construction is the large amount of time that astronauts will be spending doing extravehicular activity (EVA), or "space walks." EVAs from the space shuttle have been extraordinarily successful, most notably the on-orbit repair of the Hubble Space Telescope. But the number of hours of EVA for ISS construction exceeds that of the Hubble repair mission by orders of magnitude. Furthermore, the ISS orbit has nearly twice the inclination to Earth's equator as Hubble's orbit, so it spends part of every 90-minute circumnavigation at high latitudes, where Earth's magnetic field is less effective at shielding impinging radiation. This means that astronauts sweeping through these regions will be considerably more vulnerable to dangerous doses of energetic particles from a sudden solar eruption. Radiation and the International Space Station estimates that the likelihood of having a potentially dangerous solar event during an EVA is indeed very high. This report recommends steps that can be taken immediately, and over the next several years, to provide adequate warning so that the astronauts can be directed to take protective cover inside the ISS or shuttle. The near-term actions include programmatic and operational ways to take advantage of the multiagency assets that currently monitor and forecast space weather, and ways to improve the in situ measurements and the predictive power of current models.
Publisher: National Academies Press
ISBN: 0309068851
Category : Science
Languages : en
Pages : 96
Book Description
A major objective of the International Space Station is learning how to cope with the inherent risks of human spaceflightâ€"how to live and work in space for extended periods. The construction of the station itself provides the first opportunity for doing so. Prominent among the challenges associated with ISS construction is the large amount of time that astronauts will be spending doing extravehicular activity (EVA), or "space walks." EVAs from the space shuttle have been extraordinarily successful, most notably the on-orbit repair of the Hubble Space Telescope. But the number of hours of EVA for ISS construction exceeds that of the Hubble repair mission by orders of magnitude. Furthermore, the ISS orbit has nearly twice the inclination to Earth's equator as Hubble's orbit, so it spends part of every 90-minute circumnavigation at high latitudes, where Earth's magnetic field is less effective at shielding impinging radiation. This means that astronauts sweeping through these regions will be considerably more vulnerable to dangerous doses of energetic particles from a sudden solar eruption. Radiation and the International Space Station estimates that the likelihood of having a potentially dangerous solar event during an EVA is indeed very high. This report recommends steps that can be taken immediately, and over the next several years, to provide adequate warning so that the astronauts can be directed to take protective cover inside the ISS or shuttle. The near-term actions include programmatic and operational ways to take advantage of the multiagency assets that currently monitor and forecast space weather, and ways to improve the in situ measurements and the predictive power of current models.
Particle Diffusion in the Radiation Belts
Author: M. Schulz
Publisher: Springer Science & Business Media
ISBN: 3642656757
Category : Science
Languages : en
Pages : 227
Book Description
The advent of artificial earth satellites in 1957-58 opened a new dimension in the field of geophysical exploration. Discovery of the earth's radiation belts, consisting of energetic electrons and ions (chiefly protons) trapped by the geomagnetic field, followed almost immediately [1,2]' This largely unexpected development spurred a continuing interest in magnetospheric exploration, which so far has led to the launching of several hundred carefully instrumented spacecraft. Since their discovery, the radiation belts have been a subject of intensive theoretical analysis also. Over the years, a semiquantitative understanding of the governing dynamical processes has gradually evol ved. The underlying kinematical framework of radiation-belt theory is given by the adiabatic theory of charged-particle motion [3J, and the interesting dynamical phenomena are associated with the violation of one or more of the kinematical invariants of adiabatic motion. Among the most important of the operative dynamical processes are those that act in a stochastic manner upon the radiation-belt particles. Such stochastic processes lead to the diffusion of particle distributions with respect to the adiabatic invariants. The observational data indicate that some form of particle diffusion plays an essential role in virtually every aspect of the radiation belts.
Publisher: Springer Science & Business Media
ISBN: 3642656757
Category : Science
Languages : en
Pages : 227
Book Description
The advent of artificial earth satellites in 1957-58 opened a new dimension in the field of geophysical exploration. Discovery of the earth's radiation belts, consisting of energetic electrons and ions (chiefly protons) trapped by the geomagnetic field, followed almost immediately [1,2]' This largely unexpected development spurred a continuing interest in magnetospheric exploration, which so far has led to the launching of several hundred carefully instrumented spacecraft. Since their discovery, the radiation belts have been a subject of intensive theoretical analysis also. Over the years, a semiquantitative understanding of the governing dynamical processes has gradually evol ved. The underlying kinematical framework of radiation-belt theory is given by the adiabatic theory of charged-particle motion [3J, and the interesting dynamical phenomena are associated with the violation of one or more of the kinematical invariants of adiabatic motion. Among the most important of the operative dynamical processes are those that act in a stochastic manner upon the radiation-belt particles. Such stochastic processes lead to the diffusion of particle distributions with respect to the adiabatic invariants. The observational data indicate that some form of particle diffusion plays an essential role in virtually every aspect of the radiation belts.