Author: Jerome Minkus
Publisher: American Mathematical Soc.
ISBN: 0821822551
Category : Knot theory
Languages : en
Pages : 75
Book Description
In this paper a family of closed oriented 3 dimensional manifolds {[italic]M[subscript italic]n([italic]k,[italic]h)} is constructed by pasting together pairs of regions on the boundary of a 3 ball. The manifold [italic]M[subscript italic]n([italic]k,[italic]h) is a generalization of the lens space [italic]L([italic]n,1) and is closely related to the 2 bridge knot or link of type ([italic]k,[italic]h). While the work is basically geometrical, examination of [lowercase Greek]Pi1([italic]M[subscript italic]n([italic]k,[italic]h)) leads naturally to the study of "cyclic" presentations of groups. Abelianizing these presentations gives rise to a formula for the Alexander polynomials of 2 bridge knots and to a description of [italic]H1([italic]M[subscript italic]n([italic]k,[italic]h), [italic]Z) by means of circulant matrices whose entries are the coefficients of these polynomials.
The Branched Cyclic Coverings of 2 Bridge Knots and Links
Author: Jerome Minkus
Publisher: American Mathematical Soc.
ISBN: 0821822551
Category : Knot theory
Languages : en
Pages : 75
Book Description
In this paper a family of closed oriented 3 dimensional manifolds {[italic]M[subscript italic]n([italic]k,[italic]h)} is constructed by pasting together pairs of regions on the boundary of a 3 ball. The manifold [italic]M[subscript italic]n([italic]k,[italic]h) is a generalization of the lens space [italic]L([italic]n,1) and is closely related to the 2 bridge knot or link of type ([italic]k,[italic]h). While the work is basically geometrical, examination of [lowercase Greek]Pi1([italic]M[subscript italic]n([italic]k,[italic]h)) leads naturally to the study of "cyclic" presentations of groups. Abelianizing these presentations gives rise to a formula for the Alexander polynomials of 2 bridge knots and to a description of [italic]H1([italic]M[subscript italic]n([italic]k,[italic]h), [italic]Z) by means of circulant matrices whose entries are the coefficients of these polynomials.
Publisher: American Mathematical Soc.
ISBN: 0821822551
Category : Knot theory
Languages : en
Pages : 75
Book Description
In this paper a family of closed oriented 3 dimensional manifolds {[italic]M[subscript italic]n([italic]k,[italic]h)} is constructed by pasting together pairs of regions on the boundary of a 3 ball. The manifold [italic]M[subscript italic]n([italic]k,[italic]h) is a generalization of the lens space [italic]L([italic]n,1) and is closely related to the 2 bridge knot or link of type ([italic]k,[italic]h). While the work is basically geometrical, examination of [lowercase Greek]Pi1([italic]M[subscript italic]n([italic]k,[italic]h)) leads naturally to the study of "cyclic" presentations of groups. Abelianizing these presentations gives rise to a formula for the Alexander polynomials of 2 bridge knots and to a description of [italic]H1([italic]M[subscript italic]n([italic]k,[italic]h), [italic]Z) by means of circulant matrices whose entries are the coefficients of these polynomials.
The Branched Cyclic Coverings of 2 Bridge Knots and Links
Author: Jerome Minkus
Publisher: American Mathematical Soc.
ISBN: 9780821859896
Category : Mathematics
Languages : en
Pages : 80
Book Description
Publisher: American Mathematical Soc.
ISBN: 9780821859896
Category : Mathematics
Languages : en
Pages : 80
Book Description
Knots and Links
Author: Dale Rolfsen
Publisher: American Mathematical Soc.
ISBN: 0821834363
Category : Mathematics
Languages : en
Pages : 458
Book Description
Rolfsen's beautiful book on knots and links can be read by anyone, from beginner to expert, who wants to learn about knot theory. Beginners find an inviting introduction to the elements of topology, emphasizing the tools needed for understanding knots, the fundamental group and van Kampen's theorem, for example, which are then applied to concrete problems, such as computing knot groups. For experts, Rolfsen explains advanced topics, such as the connections between knot theory and surgery and how they are useful to understanding three-manifolds. Besides providing a guide to understanding knot theory, the book offers 'practical' training. After reading it, you will be able to do many things: compute presentations of knot groups, Alexander polynomials, and other invariants; perform surgery on three-manifolds; and visualize knots and their complements.It is characterized by its hands-on approach and emphasis on a visual, geometric understanding. Rolfsen offers invaluable insight and strikes a perfect balance between giving technical details and offering informal explanations. The illustrations are superb, and a wealth of examples are included. Now back in print by the AMS, the book is still a standard reference in knot theory. It is written in a remarkable style that makes it useful for both beginners and researchers. Particularly noteworthy is the table of knots and links at the end. This volume is an excellent introduction to the topic and is suitable as a textbook for a course in knot theory or 3-manifolds. Other key books of interest on this topic available from the AMS are ""The Shoelace Book: A Mathematical Guide to the Best (and Worst) Ways to Lace your Shoes"" and ""The Knot Book.""
Publisher: American Mathematical Soc.
ISBN: 0821834363
Category : Mathematics
Languages : en
Pages : 458
Book Description
Rolfsen's beautiful book on knots and links can be read by anyone, from beginner to expert, who wants to learn about knot theory. Beginners find an inviting introduction to the elements of topology, emphasizing the tools needed for understanding knots, the fundamental group and van Kampen's theorem, for example, which are then applied to concrete problems, such as computing knot groups. For experts, Rolfsen explains advanced topics, such as the connections between knot theory and surgery and how they are useful to understanding three-manifolds. Besides providing a guide to understanding knot theory, the book offers 'practical' training. After reading it, you will be able to do many things: compute presentations of knot groups, Alexander polynomials, and other invariants; perform surgery on three-manifolds; and visualize knots and their complements.It is characterized by its hands-on approach and emphasis on a visual, geometric understanding. Rolfsen offers invaluable insight and strikes a perfect balance between giving technical details and offering informal explanations. The illustrations are superb, and a wealth of examples are included. Now back in print by the AMS, the book is still a standard reference in knot theory. It is written in a remarkable style that makes it useful for both beginners and researchers. Particularly noteworthy is the table of knots and links at the end. This volume is an excellent introduction to the topic and is suitable as a textbook for a course in knot theory or 3-manifolds. Other key books of interest on this topic available from the AMS are ""The Shoelace Book: A Mathematical Guide to the Best (and Worst) Ways to Lace your Shoes"" and ""The Knot Book.""
Knot Theory and Manifolds
Author: Dale Rolfsen
Publisher: Springer
ISBN: 3540396160
Category : Mathematics
Languages : en
Pages : 168
Book Description
Publisher: Springer
ISBN: 3540396160
Category : Mathematics
Languages : en
Pages : 168
Book Description
Canadian Journal of Mathematics
Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 198
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 198
Book Description
Groups – Korea 98
Author: Young Gheel Baik
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110807491
Category : Mathematics
Languages : en
Pages : 392
Book Description
The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110807491
Category : Mathematics
Languages : en
Pages : 392
Book Description
The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.
Handbook of Geometric Topology
Author: R.B. Sher
Publisher: Elsevier
ISBN: 0080532853
Category : Mathematics
Languages : en
Pages : 1145
Book Description
Geometric Topology is a foundational component of modern mathematics, involving the study of spacial properties and invariants of familiar objects such as manifolds and complexes. This volume, which is intended both as an introduction to the subject and as a wide ranging resouce for those already grounded in it, consists of 21 expository surveys written by leading experts and covering active areas of current research. They provide the reader with an up-to-date overview of this flourishing branch of mathematics.
Publisher: Elsevier
ISBN: 0080532853
Category : Mathematics
Languages : en
Pages : 1145
Book Description
Geometric Topology is a foundational component of modern mathematics, involving the study of spacial properties and invariants of familiar objects such as manifolds and complexes. This volume, which is intended both as an introduction to the subject and as a wide ranging resouce for those already grounded in it, consists of 21 expository surveys written by leading experts and covering active areas of current research. They provide the reader with an up-to-date overview of this flourishing branch of mathematics.
Geometric topology
Author: William Hilal Kazez
Publisher: American Mathematical Soc.
ISBN: 9780821806548
Category : Mathematics
Languages : en
Pages : 622
Book Description
This is Part 1 of a two-part volume reflecting the proceedings of the 1993 Georgia International Topology Conference held at the University of Georgia during the month of August. The texts include research and expository articles and problem sets. The conference covered a wide variety of topics in geometric topology. Features: Kirby's problem list, which contains a thorough description of the progress made on each of the problems and includes a very complete bibliography, makes the work useful for specialists and non-specialists who want to learn about the progress made in many areas of topology. This list may serve as a reference work for decades to come. Gabai's problem list, which focuses on foliations and laminations of 3-manifolds, collects for the first time in one paper definitions, results, and problems that may serve as a defining source in the subject area.
Publisher: American Mathematical Soc.
ISBN: 9780821806548
Category : Mathematics
Languages : en
Pages : 622
Book Description
This is Part 1 of a two-part volume reflecting the proceedings of the 1993 Georgia International Topology Conference held at the University of Georgia during the month of August. The texts include research and expository articles and problem sets. The conference covered a wide variety of topics in geometric topology. Features: Kirby's problem list, which contains a thorough description of the progress made on each of the problems and includes a very complete bibliography, makes the work useful for specialists and non-specialists who want to learn about the progress made in many areas of topology. This list may serve as a reference work for decades to come. Gabai's problem list, which focuses on foliations and laminations of 3-manifolds, collects for the first time in one paper definitions, results, and problems that may serve as a defining source in the subject area.
Knot Theory
Author: J. C. Hausmann
Publisher: Springer
ISBN: 354035705X
Category : Mathematics
Languages : en
Pages : 321
Book Description
Dedicated to the Memory of Christos Demetriou Papakyriakopoulos, 1914-1976
Publisher: Springer
ISBN: 354035705X
Category : Mathematics
Languages : en
Pages : 321
Book Description
Dedicated to the Memory of Christos Demetriou Papakyriakopoulos, 1914-1976
Algebraic and Geometric Topology, Part 2
Author: R. James Milgram
Publisher: American Mathematical Soc.
ISBN: 0821814338
Category : Mathematics
Languages : en
Pages : 330
Book Description
Contains sections on Structure of topological manifolds, Low dimensional manifolds, Geometry of differential manifolds and algebraic varieties, $H$-spaces, loop spaces and $CW$ complexes, Problems.
Publisher: American Mathematical Soc.
ISBN: 0821814338
Category : Mathematics
Languages : en
Pages : 330
Book Description
Contains sections on Structure of topological manifolds, Low dimensional manifolds, Geometry of differential manifolds and algebraic varieties, $H$-spaces, loop spaces and $CW$ complexes, Problems.