The Art of High Performance Computing for Computational Science, Vol. 2

The Art of High Performance Computing for Computational Science, Vol. 2 PDF Author: Masaaki Geshi
Publisher: Springer Nature
ISBN: 981139802X
Category : Computers
Languages : en
Pages : 209

Get Book Here

Book Description
This book presents advanced and practical techniques for performance optimization for highly parallel processing. Featuring various parallelization techniques in material science, it is a valuable resource for anyone developing software codes for computational sciences such as physics, chemistry, biology, earth sciences, space science, weather, disaster prevention and manufacturing, as well as for anyone using those software codes. Chapter 1 outlines supercomputers and includes a brief explanation of the history of hardware. Chapter 2 presents procedures for performance evaluation, while Chapter 3 describes the set of tuned applications in materials science, nanoscience and nanotechnology, earth science and engineering on the K computer. Introducing the order-N method, based on density functional theory (DFT) calculation, Chapter 4 explains how to extend the applicability of DFT to large-scale systems by reducing the computational complexity. Chapter 5 discusses acceleration and parallelization in classical molecular dynamics simulations, and lastly, Chapter 6 explains techniques for large-scale quantum chemical calculations, including the order-N method. This is the second of the two volumes that grew out of a series of lectures in the K computer project in Japan. The first volume addresses more basic techniques, and this second volume focuses on advanced and concrete techniques.

The Art of High Performance Computing for Computational Science, Vol. 2

The Art of High Performance Computing for Computational Science, Vol. 2 PDF Author: Masaaki Geshi
Publisher: Springer Nature
ISBN: 981139802X
Category : Computers
Languages : en
Pages : 209

Get Book Here

Book Description
This book presents advanced and practical techniques for performance optimization for highly parallel processing. Featuring various parallelization techniques in material science, it is a valuable resource for anyone developing software codes for computational sciences such as physics, chemistry, biology, earth sciences, space science, weather, disaster prevention and manufacturing, as well as for anyone using those software codes. Chapter 1 outlines supercomputers and includes a brief explanation of the history of hardware. Chapter 2 presents procedures for performance evaluation, while Chapter 3 describes the set of tuned applications in materials science, nanoscience and nanotechnology, earth science and engineering on the K computer. Introducing the order-N method, based on density functional theory (DFT) calculation, Chapter 4 explains how to extend the applicability of DFT to large-scale systems by reducing the computational complexity. Chapter 5 discusses acceleration and parallelization in classical molecular dynamics simulations, and lastly, Chapter 6 explains techniques for large-scale quantum chemical calculations, including the order-N method. This is the second of the two volumes that grew out of a series of lectures in the K computer project in Japan. The first volume addresses more basic techniques, and this second volume focuses on advanced and concrete techniques.

The Art of High Performance Computing for Computational Science

The Art of High Performance Computing for Computational Science PDF Author: Masaaki Geshi
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


The Art of High Performance Computing for Computational Science, Vol. 1

The Art of High Performance Computing for Computational Science, Vol. 1 PDF Author: Masaaki Geshi
Publisher: Springer
ISBN: 9811361940
Category : Computers
Languages : en
Pages : 219

Get Book Here

Book Description
This book provides basic and practical techniques of parallel computing and related methods of numerical analysis for researchers who conduct numerical calculation and simulation. Although the techniques provided in this book are field-independent, these methods can be used in fields such as physics, chemistry, biology, earth sciences, space science, meteorology, disaster prevention, and manufacturing. In particular, those who develop software code in these areas will find this book useful. The contents are suitable for graduate students and researchers in computational science rather than novices at programming or informed experts in computer science. Starting with an introduction to the recent trends in computer architecture and parallel processing, Chapter 1 explains the basic knowledge of speedup programs with simple examples of numerical computing. Chapters 2 – 4 detail the basics of parallel programming, the message passing interface (MPI), and OpenMP and discuss hybrid parallelization techniques. Showing an actual example of adaptation, Chapter 5 gives an overview of performance tuning and communication optimizations. To deal with dense matrix calculations, Chapter 6 details the basics and practice of linear algebra calculation libraries BLAS and LAPACK, including some examples that can be easily reproduced by readers using free software. Focusing on sparse matrix calculations, Chapter 7 explains high performance algorithms for numerical linear algebra. Chapter 8 introduces the fast Fourier transform in large-scale systems from the basics. Chapter 9 explains optimization and related topics such as debug methods and version control systems. Chapter 10 discusses techniques for increasing computation accuracy as an essential topic in numerical calculation. This is the first of the two volumes that grew out of a series of lectures in the K computer project in Japan. The second volume will focus on advanced techniques and examples of applications in materials science.

Introduction to High Performance Scientific Computing

Introduction to High Performance Scientific Computing PDF Author: Victor Eijkhout
Publisher: Lulu.com
ISBN: 1257992546
Category : Computers
Languages : en
Pages : 536

Get Book Here

Book Description
This is a textbook that teaches the bridging topics between numerical analysis, parallel computing, code performance, large scale applications.

The Art of High Performance Computing for Computational Science, Vol. 1

The Art of High Performance Computing for Computational Science, Vol. 1 PDF Author: Masaaki Geshi
Publisher:
ISBN: 9789811361951
Category : Chemistry
Languages : en
Pages : 219

Get Book Here

Book Description
This book provides basic and practical techniques of parallel computing and related methods of numerical analysis for researchers who conduct numerical calculation and simulation. Although the techniques provided in this book are field-independent, these methods can be used in fields such as physics, chemistry, biology, earth sciences, space science, meteorology, disaster prevention, and manufacturing. In particular, those who develop software code in these areas will find this book useful. The contents are suitable for graduate students and researchers in computational science rather than novices at programming or informed experts in computer science. Starting with an introduction to the recent trends in computer architecture and parallel processing, Chapter 1 explains the basic knowledge of speedup programs with simple examples of numerical computing. Chapters 2 - 4 detail the basics of parallel programming, the message passing interface (MPI), and OpenMP and discuss hybrid parallelization techniques. Showing an actual example of adaptation, Chapter 5 gives an overview of performance tuning and communication optimizations. To deal with dense matrix calculations, Chapter 6 details the basics and practice of linear algebra calculation libraries BLAS and LAPACK, including some examples that can be easily reproduced by readers using free software. Focusing on sparse matrix calculations, Chapter 7 explains high performance algorithms for numerical linear algebra. Chapter 8 introduces the fast Fourier transform in large-scale systems from the basics. Chapter 9 explains optimization and related topics such as debug methods and version control systems. Chapter 10 discusses techniques for increasing computation accuracy as an essential topic in numerical calculation. This is the first of the two volumes that grew out of a series of lectures in the K computer project in Japan. The second volume will focus on advanced techniques and examples of applications in materials science.

High Performance Cluster Computing

High Performance Cluster Computing PDF Author: Rajkumar Buyya
Publisher: Prentice Hall
ISBN:
Category : Computers
Languages : en
Pages : 904

Get Book Here

Book Description
An authoritative guide to today's revolution in "commodity supercomputing, " this book brings together more than 100 of the field's leading practitioners, providing a single source for up-to-the-minute information on virtually every key system issue associated with high-performance cluster computing.

Contemporary High Performance Computing

Contemporary High Performance Computing PDF Author: Jeffrey S. Vetter
Publisher: CRC Press
ISBN: 135110392X
Category : Computers
Languages : en
Pages : 201

Get Book Here

Book Description
HPC is used to solve a number of complex questions in computational and data-intensive sciences. These questions include the simulation and modeling of physical phenomena, such as climate change, energy production, drug design, global security, and materials design; the analysis of large data sets such as those in genome sequencing, astronomical observation, and cybersecurity; and the intricate design of engineered products, such as airplanes and automobiles. This second volume of Contemporary High Performance Computing: From Petascale toward Exascale continues to document international HPC ecosystems, including the sponsors and sites that host them. Each chapter is punctuated with a site's flagship system and: Presents highlights of applications, workloads, and benchmarks Describes hardware architectures, system software, and programming systems Explores storage, visualization, and analytics Examines the data center/facility as well as system statistics Featuring pictures of buildings and systems in production, floorplans, and many block diagrams and charts to illustrate system design and performance, Contemporary High Performance Computing: From Petascale toward Exascale, Volume Two delivers a detailed snapshot of the rich history of practice in modern HPC. This book provides a valuable reference for researchers in HPC and computational science.

Introduction to High Performance Computing for Scientists and Engineers

Introduction to High Performance Computing for Scientists and Engineers PDF Author: Georg Hager
Publisher: CRC Press
ISBN: 1439811938
Category : Computers
Languages : en
Pages : 350

Get Book Here

Book Description
Written by high performance computing (HPC) experts, Introduction to High Performance Computing for Scientists and Engineers provides a solid introduction to current mainstream computer architecture, dominant parallel programming models, and useful optimization strategies for scientific HPC. From working in a scientific computing center, the author

High Performance Computing for Computational Science – VECPAR 2016

High Performance Computing for Computational Science – VECPAR 2016 PDF Author: Inês Dutra
Publisher: Springer
ISBN: 3319619829
Category : Computers
Languages : en
Pages : 277

Get Book Here

Book Description
This book constitutes the thoroughly refereed post-conference proceedings of the 12fth International Conference on High Performance Computing in Computational Science, VECPAR 2016, held in Porto, Portugal, in June 2016. The 20 full papers presented were carefully reviewed and selected from 36 submissions. The papers are organized in topical sections on applications; performance modeling and analysis; low level support; environments/libraries to support parallelization.

High Performance Computing in Science and Engineering ‘14

High Performance Computing in Science and Engineering ‘14 PDF Author: Wolfgang E. Nagel
Publisher: Springer
ISBN: 3319108107
Category : Computers
Languages : en
Pages : 682

Get Book Here

Book Description
This book presents the state-of-the-art in supercomputer simulation. It includes the latest findings from leading researchers using systems from the High Performance Computing Center Stuttgart (HLRS). The reports cover all fields of computational science and engineering ranging from CFD to computational physics and from chemistry to computer science with a special emphasis on industrially relevant applications. Presenting findings of one of Europe’s leading systems, this volume covers a wide variety of applications that deliver a high level of sustained performance. The book covers the main methods in high-performance computing. Its outstanding results in achieving the best performance for production codes are of particular interest for both scientists and engineers. The book comes with a wealth of color illustrations and tables of results.