Author: Tomás Roubicek
Publisher: Springer Science & Business Media
ISBN: 3764373970
Category : Mathematics
Languages : en
Pages : 415
Book Description
This book primarily concerns quasilinear and semilinear elliptic and parabolic partial differential equations, inequalities, and systems. The exposition quickly leads general theory to analysis of concrete equations, which have specific applications in such areas as electrically (semi-) conductive media, modeling of biological systems, and mechanical engineering. Methods of Galerkin or of Rothe are exposed in a large generality.
Nonlinear Partial Differential Equations with Applications
Author: Tomás Roubicek
Publisher: Springer Science & Business Media
ISBN: 3764373970
Category : Mathematics
Languages : en
Pages : 415
Book Description
This book primarily concerns quasilinear and semilinear elliptic and parabolic partial differential equations, inequalities, and systems. The exposition quickly leads general theory to analysis of concrete equations, which have specific applications in such areas as electrically (semi-) conductive media, modeling of biological systems, and mechanical engineering. Methods of Galerkin or of Rothe are exposed in a large generality.
Publisher: Springer Science & Business Media
ISBN: 3764373970
Category : Mathematics
Languages : en
Pages : 415
Book Description
This book primarily concerns quasilinear and semilinear elliptic and parabolic partial differential equations, inequalities, and systems. The exposition quickly leads general theory to analysis of concrete equations, which have specific applications in such areas as electrically (semi-) conductive media, modeling of biological systems, and mechanical engineering. Methods of Galerkin or of Rothe are exposed in a large generality.
Systems of Nonlinear Partial Differential Equations
Author: Anthony Leung
Publisher: Springer
ISBN: 0792301382
Category : Mathematics
Languages : en
Pages : 409
Book Description
'Et moi, ... , si j'avait su comment en reveru.r, One service mathematics has rendered the je n'y scrais point aIle.' human race. It has put common sense back Jules Verne where it belongs, on the topmost shelf next to the dusty canister labelled 'discarded non The series is divergent; therefore we may be sense'. Eric T. Bell able to do something with it. o. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series.
Publisher: Springer
ISBN: 0792301382
Category : Mathematics
Languages : en
Pages : 409
Book Description
'Et moi, ... , si j'avait su comment en reveru.r, One service mathematics has rendered the je n'y scrais point aIle.' human race. It has put common sense back Jules Verne where it belongs, on the topmost shelf next to the dusty canister labelled 'discarded non The series is divergent; therefore we may be sense'. Eric T. Bell able to do something with it. o. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series.
An Introduction to Nonlinear Partial Differential Equations
Author: J. David Logan
Publisher: John Wiley & Sons
ISBN: 0470225955
Category : Mathematics
Languages : en
Pages : 416
Book Description
Praise for the First Edition: "This book is well conceived and well written. The author has succeeded in producing a text on nonlinear PDEs that is not only quite readable but also accessible to students from diverse backgrounds." —SIAM Review A practical introduction to nonlinear PDEs and their real-world applications Now in a Second Edition, this popular book on nonlinear partial differential equations (PDEs) contains expanded coverage on the central topics of applied mathematics in an elementary, highly readable format and is accessible to students and researchers in the field of pure and applied mathematics. This book provides a new focus on the increasing use of mathematical applications in the life sciences, while also addressing key topics such as linear PDEs, first-order nonlinear PDEs, classical and weak solutions, shocks, hyperbolic systems, nonlinear diffusion, and elliptic equations. Unlike comparable books that typically only use formal proofs and theory to demonstrate results, An Introduction to Nonlinear Partial Differential Equations, Second Edition takes a more practical approach to nonlinear PDEs by emphasizing how the results are used, why they are important, and how they are applied to real problems. The intertwining relationship between mathematics and physical phenomena is discovered using detailed examples of applications across various areas such as biology, combustion, traffic flow, heat transfer, fluid mechanics, quantum mechanics, and the chemical reactor theory. New features of the Second Edition also include: Additional intermediate-level exercises that facilitate the development of advanced problem-solving skills New applications in the biological sciences, including age-structure, pattern formation, and the propagation of diseases An expanded bibliography that facilitates further investigation into specialized topics With individual, self-contained chapters and a broad scope of coverage that offers instructors the flexibility to design courses to meet specific objectives, An Introduction to Nonlinear Partial Differential Equations, Second Edition is an ideal text for applied mathematics courses at the upper-undergraduate and graduate levels. It also serves as a valuable resource for researchers and professionals in the fields of mathematics, biology, engineering, and physics who would like to further their knowledge of PDEs.
Publisher: John Wiley & Sons
ISBN: 0470225955
Category : Mathematics
Languages : en
Pages : 416
Book Description
Praise for the First Edition: "This book is well conceived and well written. The author has succeeded in producing a text on nonlinear PDEs that is not only quite readable but also accessible to students from diverse backgrounds." —SIAM Review A practical introduction to nonlinear PDEs and their real-world applications Now in a Second Edition, this popular book on nonlinear partial differential equations (PDEs) contains expanded coverage on the central topics of applied mathematics in an elementary, highly readable format and is accessible to students and researchers in the field of pure and applied mathematics. This book provides a new focus on the increasing use of mathematical applications in the life sciences, while also addressing key topics such as linear PDEs, first-order nonlinear PDEs, classical and weak solutions, shocks, hyperbolic systems, nonlinear diffusion, and elliptic equations. Unlike comparable books that typically only use formal proofs and theory to demonstrate results, An Introduction to Nonlinear Partial Differential Equations, Second Edition takes a more practical approach to nonlinear PDEs by emphasizing how the results are used, why they are important, and how they are applied to real problems. The intertwining relationship between mathematics and physical phenomena is discovered using detailed examples of applications across various areas such as biology, combustion, traffic flow, heat transfer, fluid mechanics, quantum mechanics, and the chemical reactor theory. New features of the Second Edition also include: Additional intermediate-level exercises that facilitate the development of advanced problem-solving skills New applications in the biological sciences, including age-structure, pattern formation, and the propagation of diseases An expanded bibliography that facilitates further investigation into specialized topics With individual, self-contained chapters and a broad scope of coverage that offers instructors the flexibility to design courses to meet specific objectives, An Introduction to Nonlinear Partial Differential Equations, Second Edition is an ideal text for applied mathematics courses at the upper-undergraduate and graduate levels. It also serves as a valuable resource for researchers and professionals in the fields of mathematics, biology, engineering, and physics who would like to further their knowledge of PDEs.
Nonlinear Systems Of Partial Differential Equations: Applications To Life And Physical Sciences
Author: Anthony W Leung
Publisher: World Scientific
ISBN: 9814467472
Category : Mathematics
Languages : en
Pages : 545
Book Description
The book presents the theory of diffusion-reaction equations starting from the Volterra-Lotka systems developed in the eighties for Dirichlet boundary conditions. It uses the analysis of applicable systems of partial differential equations as a starting point for studying upper-lower solutions, bifurcation, degree theory and other nonlinear methods. It also illustrates the use of semigroup, stability theorems and W2ptheory. Introductory explanations are included in the appendices for non-expert readers.The first chapter covers a wide range of steady-state and stability results involving prey-predator, competing and cooperating species under strong or weak interactions. Many diagrams are included to easily understand the description of the range of parameters for coexistence. The book provides a comprehensive presentation of topics developed by numerous researchers. Large complex systems are introduced for modern research in ecology, medicine and engineering.Chapter 3 combines the theories of earlier chapters with the optimal control of systems involving resource management and fission reactors. This is the first book to present such topics at research level. Chapter 4 considers persistence, cross-diffusion, and boundary induced blow-up, etc. The book also covers traveling or systems of waves, coupled Navier-Stokes and Maxwell systems, and fluid equations of plasma display. These should be of interest to life and physical scientists.
Publisher: World Scientific
ISBN: 9814467472
Category : Mathematics
Languages : en
Pages : 545
Book Description
The book presents the theory of diffusion-reaction equations starting from the Volterra-Lotka systems developed in the eighties for Dirichlet boundary conditions. It uses the analysis of applicable systems of partial differential equations as a starting point for studying upper-lower solutions, bifurcation, degree theory and other nonlinear methods. It also illustrates the use of semigroup, stability theorems and W2ptheory. Introductory explanations are included in the appendices for non-expert readers.The first chapter covers a wide range of steady-state and stability results involving prey-predator, competing and cooperating species under strong or weak interactions. Many diagrams are included to easily understand the description of the range of parameters for coexistence. The book provides a comprehensive presentation of topics developed by numerous researchers. Large complex systems are introduced for modern research in ecology, medicine and engineering.Chapter 3 combines the theories of earlier chapters with the optimal control of systems involving resource management and fission reactors. This is the first book to present such topics at research level. Chapter 4 considers persistence, cross-diffusion, and boundary induced blow-up, etc. The book also covers traveling or systems of waves, coupled Navier-Stokes and Maxwell systems, and fluid equations of plasma display. These should be of interest to life and physical scientists.
Nonlinear PDEs
Author: Guido Schneider
Publisher: American Mathematical Soc.
ISBN: 1470436132
Category : Mathematics
Languages : en
Pages : 593
Book Description
This is an introductory textbook about nonlinear dynamics of PDEs, with a focus on problems over unbounded domains and modulation equations. The presentation is example-oriented, and new mathematical tools are developed step by step, giving insight into some important classes of nonlinear PDEs and nonlinear dynamics phenomena which may occur in PDEs. The book consists of four parts. Parts I and II are introductions to finite- and infinite-dimensional dynamics defined by ODEs and by PDEs over bounded domains, respectively, including the basics of bifurcation and attractor theory. Part III introduces PDEs on the real line, including the Korteweg-de Vries equation, the Nonlinear Schrödinger equation and the Ginzburg-Landau equation. These examples often occur as simplest possible models, namely as amplitude or modulation equations, for some real world phenomena such as nonlinear waves and pattern formation. Part IV explores in more detail the connections between such complicated physical systems and the reduced models. For many models, a mathematically rigorous justification by approximation results is given. The parts of the book are kept as self-contained as possible. The book is suitable for self-study, and there are various possibilities to build one- or two-semester courses from the book.
Publisher: American Mathematical Soc.
ISBN: 1470436132
Category : Mathematics
Languages : en
Pages : 593
Book Description
This is an introductory textbook about nonlinear dynamics of PDEs, with a focus on problems over unbounded domains and modulation equations. The presentation is example-oriented, and new mathematical tools are developed step by step, giving insight into some important classes of nonlinear PDEs and nonlinear dynamics phenomena which may occur in PDEs. The book consists of four parts. Parts I and II are introductions to finite- and infinite-dimensional dynamics defined by ODEs and by PDEs over bounded domains, respectively, including the basics of bifurcation and attractor theory. Part III introduces PDEs on the real line, including the Korteweg-de Vries equation, the Nonlinear Schrödinger equation and the Ginzburg-Landau equation. These examples often occur as simplest possible models, namely as amplitude or modulation equations, for some real world phenomena such as nonlinear waves and pattern formation. Part IV explores in more detail the connections between such complicated physical systems and the reduced models. For many models, a mathematically rigorous justification by approximation results is given. The parts of the book are kept as self-contained as possible. The book is suitable for self-study, and there are various possibilities to build one- or two-semester courses from the book.
Solving Nonlinear Partial Differential Equations with Maple and Mathematica
Author: Inna Shingareva
Publisher: Springer Science & Business Media
ISBN: 370910517X
Category : Mathematics
Languages : en
Pages : 372
Book Description
The emphasis of the book is given in how to construct different types of solutions (exact, approximate analytical, numerical, graphical) of numerous nonlinear PDEs correctly, easily, and quickly. The reader can learn a wide variety of techniques and solve numerous nonlinear PDEs included and many other differential equations, simplifying and transforming the equations and solutions, arbitrary functions and parameters, presented in the book). Numerous comparisons and relationships between various types of solutions, different methods and approaches are provided, the results obtained in Maple and Mathematica, facilitates a deeper understanding of the subject. Among a big number of CAS, we choose the two systems, Maple and Mathematica, that are used worldwide by students, research mathematicians, scientists, and engineers. As in the our previous books, we propose the idea to use in parallel both systems, Maple and Mathematica, since in many research problems frequently it is required to compare independent results obtained by using different computer algebra systems, Maple and/or Mathematica, at all stages of the solution process. One of the main points (related to CAS) is based on the implementation of a whole solution method (e.g. starting from an analytical derivation of exact governing equations, constructing discretizations and analytical formulas of a numerical method, performing numerical procedure, obtaining various visualizations, and comparing the numerical solution obtained with other types of solutions considered in the book, e.g. with asymptotic solution).
Publisher: Springer Science & Business Media
ISBN: 370910517X
Category : Mathematics
Languages : en
Pages : 372
Book Description
The emphasis of the book is given in how to construct different types of solutions (exact, approximate analytical, numerical, graphical) of numerous nonlinear PDEs correctly, easily, and quickly. The reader can learn a wide variety of techniques and solve numerous nonlinear PDEs included and many other differential equations, simplifying and transforming the equations and solutions, arbitrary functions and parameters, presented in the book). Numerous comparisons and relationships between various types of solutions, different methods and approaches are provided, the results obtained in Maple and Mathematica, facilitates a deeper understanding of the subject. Among a big number of CAS, we choose the two systems, Maple and Mathematica, that are used worldwide by students, research mathematicians, scientists, and engineers. As in the our previous books, we propose the idea to use in parallel both systems, Maple and Mathematica, since in many research problems frequently it is required to compare independent results obtained by using different computer algebra systems, Maple and/or Mathematica, at all stages of the solution process. One of the main points (related to CAS) is based on the implementation of a whole solution method (e.g. starting from an analytical derivation of exact governing equations, constructing discretizations and analytical formulas of a numerical method, performing numerical procedure, obtaining various visualizations, and comparing the numerical solution obtained with other types of solutions considered in the book, e.g. with asymptotic solution).
Numerical Methods for Nonlinear Partial Differential Equations
Author: Sören Bartels
Publisher: Springer
ISBN: 3319137972
Category : Mathematics
Languages : en
Pages : 394
Book Description
The description of many interesting phenomena in science and engineering leads to infinite-dimensional minimization or evolution problems that define nonlinear partial differential equations. While the development and analysis of numerical methods for linear partial differential equations is nearly complete, only few results are available in the case of nonlinear equations. This monograph devises numerical methods for nonlinear model problems arising in the mathematical description of phase transitions, large bending problems, image processing, and inelastic material behavior. For each of these problems the underlying mathematical model is discussed, the essential analytical properties are explained, and the proposed numerical method is rigorously analyzed. The practicality of the algorithms is illustrated by means of short implementations.
Publisher: Springer
ISBN: 3319137972
Category : Mathematics
Languages : en
Pages : 394
Book Description
The description of many interesting phenomena in science and engineering leads to infinite-dimensional minimization or evolution problems that define nonlinear partial differential equations. While the development and analysis of numerical methods for linear partial differential equations is nearly complete, only few results are available in the case of nonlinear equations. This monograph devises numerical methods for nonlinear model problems arising in the mathematical description of phase transitions, large bending problems, image processing, and inelastic material behavior. For each of these problems the underlying mathematical model is discussed, the essential analytical properties are explained, and the proposed numerical method is rigorously analyzed. The practicality of the algorithms is illustrated by means of short implementations.
Nonlinear Partial Differential Equations with Applications
Author: Tomáš Roubíček
Publisher: Springer Science & Business Media
ISBN: 3034805136
Category : Mathematics
Languages : en
Pages : 486
Book Description
This book primarily concerns quasilinear and semilinear elliptic and parabolic partial differential equations, inequalities, and systems. The exposition leads the reader through the general theory based on abstract (pseudo-) monotone or accretive operators as fast as possible towards the analysis of concrete differential equations, which have specific applications in continuum (thermo-) mechanics of solids and fluids, electrically (semi-) conductive media, modelling of biological systems, or in mechanical engineering. Selected parts are mainly an introduction into the subject while some others form an advanced textbook. The second edition simplifies and extends the exposition at particular spots and augments the applications especially towards thermally coupled systems, magnetism, and more. The intended audience is graduate and PhD students as well as researchers in the theory of partial differential equations or in mathematical modelling of distributed parameter systems. ------ The monograph contains a wealth of material in both the abstract theory of steady-state or evolution equations of monotone and accretive type and concrete applications to nonlinear partial differential equations from mathematical modeling. The organization of the material is well done, and the presentation, although concise, is clear, elegant and rigorous. (...) this book is a notable addition to the existing literature. Also, it certainly will prove useful to engineers, physicists, biologists and other scientists interested in the analysis of (...) nonlinear differential models of the real world. (Mathematical Reviews)
Publisher: Springer Science & Business Media
ISBN: 3034805136
Category : Mathematics
Languages : en
Pages : 486
Book Description
This book primarily concerns quasilinear and semilinear elliptic and parabolic partial differential equations, inequalities, and systems. The exposition leads the reader through the general theory based on abstract (pseudo-) monotone or accretive operators as fast as possible towards the analysis of concrete differential equations, which have specific applications in continuum (thermo-) mechanics of solids and fluids, electrically (semi-) conductive media, modelling of biological systems, or in mechanical engineering. Selected parts are mainly an introduction into the subject while some others form an advanced textbook. The second edition simplifies and extends the exposition at particular spots and augments the applications especially towards thermally coupled systems, magnetism, and more. The intended audience is graduate and PhD students as well as researchers in the theory of partial differential equations or in mathematical modelling of distributed parameter systems. ------ The monograph contains a wealth of material in both the abstract theory of steady-state or evolution equations of monotone and accretive type and concrete applications to nonlinear partial differential equations from mathematical modeling. The organization of the material is well done, and the presentation, although concise, is clear, elegant and rigorous. (...) this book is a notable addition to the existing literature. Also, it certainly will prove useful to engineers, physicists, biologists and other scientists interested in the analysis of (...) nonlinear differential models of the real world. (Mathematical Reviews)
Systems of Nonlinear Partial Differential Equations
Author: J.M. Ball
Publisher: Springer Science & Business Media
ISBN: 9400971893
Category : Mathematics
Languages : en
Pages : 476
Book Description
This volume contains the proceedings of a NATO/London Mathematical Society Advanced Study Institute held in Oxford from 25 July - 7 August 1982. The institute concerned the theory and applications of systems of nonlinear partial differential equations, with emphasis on techniques appropriate to systems of more than one equation. Most of the lecturers and participants were analysts specializing in partial differential equations, but also present were a number of numerical analysts, workers in mechanics, and other applied mathematicians. The organizing committee for the institute was J.M. Ball (Heriot-Watt), T.B. Benjamin (Oxford), J. Carr (Heriot-Watt), C.M. Dafermos (Brown), S. Hildebrandt (Bonn) and J.S. pym (Sheffield) . The programme of the institute consisted of a number of courses of expository lectures, together with special sessions on different topics. It is a pleasure to thank all the lecturers for the care they took in the preparation of their talks, and S.S. Antman, A.J. Chorin, J.K. Hale and J.E. Marsden for the organization of their special sessions. The institute was made possible by financial support from NATO, the London Mathematical Society, the u.S. Army Research Office, the u.S. Army European Research Office, and the u.S. National Science Foundation. The lectures were held in the Mathematical Institute of the University of Oxford, and residential accommodation was provided at Hertford College.
Publisher: Springer Science & Business Media
ISBN: 9400971893
Category : Mathematics
Languages : en
Pages : 476
Book Description
This volume contains the proceedings of a NATO/London Mathematical Society Advanced Study Institute held in Oxford from 25 July - 7 August 1982. The institute concerned the theory and applications of systems of nonlinear partial differential equations, with emphasis on techniques appropriate to systems of more than one equation. Most of the lecturers and participants were analysts specializing in partial differential equations, but also present were a number of numerical analysts, workers in mechanics, and other applied mathematicians. The organizing committee for the institute was J.M. Ball (Heriot-Watt), T.B. Benjamin (Oxford), J. Carr (Heriot-Watt), C.M. Dafermos (Brown), S. Hildebrandt (Bonn) and J.S. pym (Sheffield) . The programme of the institute consisted of a number of courses of expository lectures, together with special sessions on different topics. It is a pleasure to thank all the lecturers for the care they took in the preparation of their talks, and S.S. Antman, A.J. Chorin, J.K. Hale and J.E. Marsden for the organization of their special sessions. The institute was made possible by financial support from NATO, the London Mathematical Society, the u.S. Army Research Office, the u.S. Army European Research Office, and the u.S. National Science Foundation. The lectures were held in the Mathematical Institute of the University of Oxford, and residential accommodation was provided at Hertford College.
Nonlinear Partial Differential Equations for Scientists and Engineers
Author: Lokenath Debnath
Publisher: Springer Science & Business Media
ISBN: 1489928464
Category : Mathematics
Languages : en
Pages : 602
Book Description
This expanded and revised second edition is a comprehensive and systematic treatment of linear and nonlinear partial differential equations and their varied applications. Building upon the successful material of the first book, this edition contains updated modern examples and applications from diverse fields. Methods and properties of solutions, along with their physical significance, help make the book more useful for a diverse readership. The book is an exceptionally complete text/reference for graduates, researchers, and professionals in mathematics, physics, and engineering.
Publisher: Springer Science & Business Media
ISBN: 1489928464
Category : Mathematics
Languages : en
Pages : 602
Book Description
This expanded and revised second edition is a comprehensive and systematic treatment of linear and nonlinear partial differential equations and their varied applications. Building upon the successful material of the first book, this edition contains updated modern examples and applications from diverse fields. Methods and properties of solutions, along with their physical significance, help make the book more useful for a diverse readership. The book is an exceptionally complete text/reference for graduates, researchers, and professionals in mathematics, physics, and engineering.