Synthesis of Polydentate Ligands and TheFormation of Heterometallic and CircularHelicates

Synthesis of Polydentate Ligands and TheFormation of Heterometallic and CircularHelicates PDF Author: Martina Whitehead
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Described herein, is the synthesis and coordination chemistry of seven novel ligands L1 - L7. These ligands form metallosupramolecular assemblies upon coordination of transition metal ions resulting in heterodi- and hetreotrimetallic double helicates and penta- and tetranuclear cyclic helicates. Described in Chapter 2 is a new class of ditopic segmental pyridyl-thiazole(py-tz) N-donor ligands L1 - L3. Reaction of L1 with ZnII ions results in the formation of a dinuclear double helicate [Zn2(L1)2]4+. Reaction of L2 with either ZnII or HgII results in the formation of the L2-containing dinuclear double helicates [Zn2(L2)2]4+ and [Hg2(L2)2]4+. However, reaction with both ZnII or HgII results in the sole formation of the heterodimetallic helicate [HgZn(L2)2]+. Both metal ions are 6-coordinate but the HgII ion is coordinated by the two py-tz-py units whereas the ZnII ion is coordinated by the py-py-tz domain. The reason that these isomeric sites have different preferences for each of the metal ions is due to the position of the thiazole unit within the terdentate domains, as in the central position the thiazole unit increases the?bite angle? of the donor unit making it more suitable for the larger HgII. Conversely the py-py-tz domain has a smaller bite angle and it more suited to the smaller ZnII ion. Reaction of L3 with ZnII, HgII and CuII results in the formation of a heterometallic trinuclear double helicate [HH-[HgCuZn(L3)2]5+. In a similar fashion to L2, the ZnII ion coordinated by the terdentate py-py-tz domain and the HgII coordinated by the py-tz-py domain. The central bipyridine unit coordinates the tetrahedral CuII ion resulting in the first reported example of a heterotrimetallic double helicate. Described in Chapter 4 is a potentially hexadentate N-donor ligand L4, which upon reaction with CdII results in the formation of a dinuclear double helicate [Cd2(L4)2]4+. In this structure the ligand partitions into two tridentate tz-py-py domains each of which coordinate a different metal ion. However, reaction of L4 with ZnII results in the formation of a pentanuclear circular helicate [Zn5(L4)5]10+, with all the five zinc ions adopting a octahedral coordination geometry arising from the coordination of the two tridentate tz-py-py domains from two different ligand strands. This difference in structure is attributed to unfavourable steric interactions which prevent the formation of [Zn2(L4)2]4+ but these unfavourable interactions are not present with the larger Cd2+ ion. Described in Chapter 5 are the potentially pentadentate and tetradentate ligands L5 and L6, respectively. The ligand L5 contains both a bidentate and tridentate binding site separated by a phenylene spacer unit. Reaction of L5 with CuII results in the formation of a pentanuclear circular helicate [Cu5(L5)5]10+. Each of the CuII ions adopts a 5-coordinate geometry formed by coordination of the bidentate domain of one ligand strand and the tridentate domain of a different ligand. As a result this gives a head-to-tail pentanuclear double helicate. Reaction of L6 and L4 (Chapter 4) with CuII results in the formation of a heteroleptic pentanuclear circular helicate [Cu5(L4)3(L6)2]10+. The cyclic array consists of five copper(II) ions, coordinated by three strands of L4 and two strands of L6. In this species four of the CuII adopt a 5- coordinate geometry arising from coordination of a tridentate domain from L4 and a bidentate domain from L6. The remaining copper ion is coordinated by two tridentate domains from L4 resulting in an octahedral coordination geometry. Described in Chapter 6 is the potentially hexadentate N-donor ligand L7 which comprises of two identical tridentate py-py-tz N3 binding domains separated by a pyrene unit. Reaction of L7 with ZnII results in the formation of a tetranuclear circular helicate [Zn4(L7)4]8+ with all four zinc metal ions adopting a six-coordinate geometry arising from the coordination of two tridentate pypy- tz units from two different ligand strands. The formation of this lower nuclearity species (e.g. tetranuclear rather than pentanuclear) is attributed to the p-stacking between the pyrene unit and the py-py-tz domain.

Synthesis of polydentate ligands and the formation of heterometallic and circular helicates

Synthesis of polydentate ligands and the formation of heterometallic and circular helicates PDF Author: Martina Whitehead
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description


Lanthanide Single Molecule Magnets

Lanthanide Single Molecule Magnets PDF Author: Jinkui Tang
Publisher: Springer
ISBN: 3662469995
Category : Science
Languages : en
Pages : 219

Get Book Here

Book Description
This book begins by providing basic information on single-molecule magnets (SMMs), covering the magnetism of lanthanide, the characterization and relaxation dynamics of SMMs and advanced means of studying lanthanide SMMs. It then systematically introduces lanthanide SMMs ranging from mononuclear and dinuclear to polynuclear complexes, classifying them and highlighting those SMMs with high barrier and blocking temperatures – an approach that provides some very valuable indicators for the structural features needed to optimize the contribution of an Ising type spin to a molecular magnet. The final chapter presents some of the newest developments in the lanthanide SMM field, such as the design of multifunctional and stimuli-responsive magnetic materials as well as the anchoring and organization of the SMMs on surfaces. In addition, the crystal structure and magnetic data are clearly presented with a wealth of illustrations in each chapter, helping newcomers and experts alike to better grasp ongoing trends and explore new directions. Jinkui Tang is a professor at Changchun Institute of Applied Chemistry, Chinese Academy of Sciences. Peng Zhang is currently pursuing his PhD at Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, with a specific focus on the molecular magnetism of lanthanide compounds under the supervision of Prof. Jinkui Tang.

Recent Development in Clusters of Rare Earths and Actinides: Chemistry and Materials

Recent Development in Clusters of Rare Earths and Actinides: Chemistry and Materials PDF Author: Zhiping Zheng
Publisher: Springer
ISBN: 3662533030
Category : Science
Languages : en
Pages : 343

Get Book Here

Book Description
Chemical structure and bonding. The scope of the series spans the entire Periodic Table and addresses structure and bonding issues associated with all of the elements. It also focuses attention on new and developing areas of modern structural and theoretical chemistry such as nanostructures, molecular electronics, designed molecular solids, surfaces, metal clusters and supramolecular structures. Physical and spectroscopic techniques used to determine, examine and model structures fall within the purview of Structure and Bonding to the extent that the focus is on the scientific results obtained and not on specialist information concerning the techniques themselves. Issues associated with the development of bonding models and generalizations that illuminate the reactivity pathways and rates of chemical processes are also relevant. The individual volumes in the series are thematic. The goal of each volume is to give the reader, whether at a university or in industry, a comprehensive overview of an area where new insights are emerging that are of interest to a larger scientific audience.

Structural Phase Transitions

Structural Phase Transitions PDF Author: A. D. Bruce
Publisher:
ISBN:
Category : Crystallography
Languages : en
Pages : 344

Get Book Here

Book Description


Lanthanide Luminescence

Lanthanide Luminescence PDF Author: Pekka Hänninen
Publisher: Springer Science & Business Media
ISBN: 3642210236
Category : Science
Languages : en
Pages : 392

Get Book Here

Book Description
Lanthanides have fascinated scientists for more than two centuries now, and since efficient separation techniques were established roughly 50 years ago, they have increasingly found their way into industrial exploitation and our everyday lives. Numerous applications are based on their unique luminescent properties, which are highlighted in this volume. It presents established knowledge about the photophysical basics, relevant lanthanide probes or materials, and describes instrumentation-related aspects including chemical and physical sensors. The uses of lanthanides in bioanalysis and medicine are outlined, such as assays for in vitro diagnostics and research. All chapters were compiled by renowned scientists with a broad audience in mind, providing both beginners in the field and advanced researchers with comprehensive information on on the given subject.

Chirality in Transition Metal Chemistry

Chirality in Transition Metal Chemistry PDF Author: Hani Amouri
Publisher: John Wiley & Sons
ISBN: 047072160X
Category : Science
Languages : en
Pages : 260

Get Book Here

Book Description
Chirality in Transition Metal Chemistry is an essential introduction to this increasingly important field for students and researchers in inorganic chemistry. Emphasising applications and real-world examples, the book begins with an overview of chirality, with a discussion of absolute configurations and system descriptors, physical properties of enantiomers, and principles of resolution and preparation of enantiomers. The subsequent chapters deal with the the specifics of chirality as it applies to transition metals. Some reviews of Chirality in Transition Metal Chemistry "...useful to students taking an advanced undergraduate course and particularly to postgraduates and academics undertaking research in the areas of chiral inorganic supramolecular complexes and materials." Chemistry World, August 2009 “...the book offers an extremely exciting new addition to the study of inorganic chemistry, and should be compulsory reading for students entering their final year of undergraduate studies or starting a Ph.D. in structural inorganic chemistry.” Applied Organometallic Chemistry Volume 23, Issue 5, May 2009 “...In conclusion the book gives a wonderful overview of the topic. It is helpful for anyone entering the field through systematic and detailed introduction of basic information. It was time to publish a new and topical text book covering the important aspect of coordination chemistry. It builds bridges between Inorganic, organic and supramolecular chemistry. I can recommend the book to everybody who is interested in the chemistry of chiral coordination compounds .” Angew. chem. Volume 48, Issue 18, April 2009 About the Series Chirality in Transition Metal Chemistry is the latest addition to the Wiley Inorganic Chemistry Advanced Textbook series. This series reflects the pivotal role of modern inorganic and physical chemistry in a whole range of emerging areas such as materials chemistry, green chemistry and bioinorganic chemistry, as well as providing a solid grounding in established areas such as solid state chemistry, coordination chemistry, main group chemistry and physical inorganic chemistry.

Advances in Inorganic Chemistry

Advances in Inorganic Chemistry PDF Author: Rudi van Eldik
Publisher: Elsevier
ISBN: 0080467385
Category : Science
Languages : en
Pages : 333

Get Book Here

Book Description
This thematic issue devoted to 'Template Effects and Molecular Organization' is based on a special symposium recently organized by the American Chemical Society in Philadelphia. The authors contributed oral presentations and are experts in their fields. Each chapter is fully referenced Contains comprehensive reviews written by leading experts in the field Includes new information on the important advances in inorganic and bioinorganic chemistry

Metallomacrocycles

Metallomacrocycles PDF Author: Hai-Bo Yang
Publisher: Royal Society of Chemistry
ISBN: 1782628584
Category : Science
Languages : en
Pages : 304

Get Book Here

Book Description
A comprehensive overview of metallomacrocycles from designing complex functional metallosupramolecular systems to their applications.

Molecular Catenanes, Rotaxanes and Knots

Molecular Catenanes, Rotaxanes and Knots PDF Author: Jean-Pierre Sauvage
Publisher: John Wiley & Sons
ISBN: 3527613730
Category : Science
Languages : de
Pages : 382

Get Book Here

Book Description
This journey through the fascinating world of molecular topology focuses on catenanes, rotaxanes and knots, their synthesis, properties, and applications and the theory of interlocking and interpenetrating molecules. Nearly one hundred years of progress have passed since Willstätter's speculative vision of a molecule consisting of two interlinked rings. But even today the synthesis of such structures are a challenge to the creativity of synthetic chemists. These molecules are not only of academic interest, since they occur naturally. In such molecules as DNA, knots and related topological features play a key role in biochemical processes. In addition, extensive research on the properties of polyrotaxanes and polycatenanes show potential applications as molecular magnets, wires or switches. Twelve international leading experts in the field present the broad and impressive spectrum of the topology of these molecules, from theoretical aspects and new pathways in synthesis to probing their properties. All researchers working in this interdisciplinary area, whether organic, inorganic or polymer chemists, as well as material scientists, will welcome this comprehensive and up-to-date work as an inspiring source for creative research ideas.