Summability Calculus

Summability Calculus PDF Author: Ibrahim M. Alabdulmohsin
Publisher: Springer
ISBN: 3319746480
Category : Mathematics
Languages : en
Pages : 168

Get Book Here

Book Description
This book develops the foundations of "summability calculus", which is a comprehensive theory of fractional finite sums. It fills an important gap in the literature by unifying and extending disparate historical results. It also presents new material that has not been published before. Importantly, it shows how the study of fractional finite sums benefits from and contributes to many areas of mathematics, such as divergent series, numerical integration, approximation theory, asymptotic methods, special functions, series acceleration, Fourier analysis, the calculus of finite differences, and information theory. As such, it appeals to a wide audience of mathematicians whose interests include the study of special functions, summability theory, analytic number theory, series and sequences, approximation theory, asymptotic expansions, or numerical methods. Richly illustrated, it features chapter summaries, and includes numerous examples and exercises. The content is mostly developed from scratch using only undergraduate mathematics, such as calculus and linear algebra.

Divergent Series, Summability and Resurgence I

Divergent Series, Summability and Resurgence I PDF Author: Claude Mitschi
Publisher: Springer
ISBN: 3319287362
Category : Mathematics
Languages : en
Pages : 314

Get Book Here

Book Description
Providing an elementary introduction to analytic continuation and monodromy, the first part of this volume applies these notions to the local and global study of complex linear differential equations, their formal solutions at singular points, their monodromy and their differential Galois groups. The Riemann-Hilbert problem is discussed from Bolibrukh’s point of view. The second part expounds 1-summability and Ecalle’s theory of resurgence under fairly general conditions. It contains numerous examples and presents an analysis of the singularities in the Borel plane via “alien calculus”, which provides a full description of the Stokes phenomenon for linear or non-linear differential or difference equations. The first of a series of three, entitled Divergent Series, Summability and Resurgence, this volume is aimed at graduate students, mathematicians and theoretical physicists interested in geometric, algebraic or local analytic properties of dynamical systems. It includes useful exercises with solutions. The prerequisites are a working knowledge of elementary complex analysis and differential algebra.

Abstract Calculus

Abstract Calculus PDF Author: Francisco Javier Garcia-Pacheco
Publisher: CRC Press
ISBN: 1000432262
Category : Mathematics
Languages : en
Pages : 396

Get Book Here

Book Description
Abstract Calculus: A Categorical Approach provides an abstract approach to calculus. It is intended for graduate students pursuing PhDs in pure mathematics but junior and senior researchers in basically any field of mathematics and theoretical physics will also be interested. Any calculus text for undergraduate students majoring in engineering, mathematics or physics deals with the classical concepts of limits, continuity, differentiability, optimization, integrability, summability, and approximation. This book covers the exact same topics, but from a categorical perspective, making the classification of topological modules as the main category involved. Features Suitable for PhD candidates and researchers Requires prerequisites in set theory, general topology, and abstract algebra, but is otherwise self-contained Dr. Francisco Javier García-Pacheco is a full professor and Director of the Departmental Section of Mathematics at the College of Engineering of the University of Cádiz, Spain.

Summability Theory and Its Applications

Summability Theory and Its Applications PDF Author: Feyzi Başar
Publisher: CRC Press
ISBN: 1000599140
Category : Mathematics
Languages : en
Pages : 521

Get Book Here

Book Description
Summability Theory and Its Applications explains various aspects of summability and demonstrates its applications in a rigorous and coherent manner. The content can readily serve as a reference or as a useful series of lecture notes on the subject. This substantially revised new edition includes brand new material across several chapters as well as several corrections, including: the addition of the domain of Cesaro matrix C(m) of order m in the classical sequence spaces to Chapter 4; and introducing the domain of four-dimensional binomial matrix in the spaces of bounded, convergent in the Pringsheim's sense, both convergent in the Pringsheim's sense and bounded, and regularly convergent double sequences, in Chapter 7. Features Investigates different types of summable spaces and computes their dual Suitable for graduate students and researchers with a (special) interest in spaces of single and double sequences, matrix transformations and domains of triangle matrices Can serve as a reference or as supplementary reading in a computational physics course, or as a key text for special Analysis seminars.

Divergent Series, Summability and Resurgence II

Divergent Series, Summability and Resurgence II PDF Author: Michèle Loday-Richaud
Publisher: Springer
ISBN: 3319290754
Category : Mathematics
Languages : en
Pages : 286

Get Book Here

Book Description
Addressing the question how to “sum” a power series in one variable when it diverges, that is, how to attach to it analytic functions, the volume gives answers by presenting and comparing the various theories of k-summability and multisummability. These theories apply in particular to all solutions of ordinary differential equations. The volume includes applications, examples and revisits, from a cohomological point of view, the group of tangent-to-identity germs of diffeomorphisms of C studied in volume 1. With a view to applying the theories to solutions of differential equations, a detailed survey of linear ordinary differential equations is provided, which includes Gevrey asymptotic expansions, Newton polygons, index theorems and Sibuya’s proof of the meromorphic classification theorem that characterizes the Stokes phenomenon for linear differential equations. This volume is the second in a series of three, entitled Divergent Series, Summability and Resurgence. It is aimed at graduate students and researchers in mathematics and theoretical physics who are interested in divergent series, Although closely related to the other two volumes, it can be read independently.

Approximation Theory, Sequence Spaces and Applications

Approximation Theory, Sequence Spaces and Applications PDF Author: S. A. Mohiuddine
Publisher: Springer Nature
ISBN: 9811961166
Category : Mathematics
Languages : en
Pages : 277

Get Book Here

Book Description
This book publishes original research chapters on the theory of approximation by positive linear operators as well as theory of sequence spaces and illustrates their applications. Chapters are original and contributed by active researchers in the field of approximation theory and sequence spaces. Each chapter describes the problem of current importance and summarizes ways of their solution and possible applications which improve the current understanding pertaining to sequence spaces and approximation theory. The presentation of the articles is clear and self-contained throughout the book.

Index Theory for Locally Compact Noncommutative Geometries

Index Theory for Locally Compact Noncommutative Geometries PDF Author: A. L. Carey
Publisher: American Mathematical Soc.
ISBN: 0821898388
Category : Mathematics
Languages : en
Pages : 142

Get Book Here

Book Description
Spectral triples for nonunital algebras model locally compact spaces in noncommutative geometry. In the present text, the authors prove the local index formula for spectral triples over nonunital algebras, without the assumption of local units in our algebra. This formula has been successfully used to calculate index pairings in numerous noncommutative examples. The absence of any other effective method of investigating index problems in geometries that are genuinely noncommutative, particularly in the nonunital situation, was a primary motivation for this study and the authors illustrate this point with two examples in the text. In order to understand what is new in their approach in the commutative setting the authors prove an analogue of the Gromov-Lawson relative index formula (for Dirac type operators) for even dimensional manifolds with bounded geometry, without invoking compact supports. For odd dimensional manifolds their index formula appears to be completely new.

Classical and Modern Methods in Summability

Classical and Modern Methods in Summability PDF Author: Johann Boos
Publisher: Clarendon Press
ISBN: 9780198501657
Category : Mathematics
Languages : en
Pages : 616

Get Book Here

Book Description
Summability is a mathematical topic with a long tradition and many applications in, for example, function theory, number theory, and stochastics. It was originally based on classical analytical methods, but was strongly influenced by modern functional analytical methods during the last seven decades. The present book aims to introduce the reader to the wide field of summability and its applications, and provides an overview of the most important classical and modern methods used. Part I contains a short general introduction to summability, the basic classical theory concerning mainly inclusion theorems and theorems of the Silverman-Toeplitz type, a presentation of the most important classes of summability methods, Tauberian theorems, and applications of matrix methods. The proofs in Part I are exclusively done by applying classical analytical methods. Part II is concerned with modern functional analytical methods in summability, and contains the essential functional analytical basis required in later parts of the book, topologization of sequence spaces as K- and KF-spaces, domains of matrix methods as FK-spaces and their topological structure. In this part the proofs are of functional analytical nature only. Part III of the present book deals with topics in summability and topological sequence spaces which require the combination of classical and modern methods. It covers investigations of the constistency of matrix methods and of the bounded domain of matrix methods via Saks space theory, and the presentation of some aspects in topological sequence spaces. Lecturers, graduate students, and researchers working in summability and related topics will find this book a useful introduction and reference work.

Advanced Topics in Mathematical Analysis

Advanced Topics in Mathematical Analysis PDF Author: Michael Ruzhansky
Publisher: CRC Press
ISBN: 1351142100
Category : Mathematics
Languages : en
Pages : 428

Get Book Here

Book Description
Advanced Topics in Mathematical Analysis is aimed at researchers, graduate students, and educators with an interest in mathematical analysis, and in mathematics more generally. The book aims to present theory, methods, and applications of the selected topics that have significant, useful relevance to contemporary research.

Complex Differential and Difference Equations

Complex Differential and Difference Equations PDF Author: Galina Filipuk
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110609614
Category : Mathematics
Languages : en
Pages : 520

Get Book Here

Book Description
With a balanced combination of longer survey articles and shorter, peer-reviewed research-level presentations on the topic of differential and difference equations on the complex domain, this edited volume presents an up-to-date overview of areas such as WKB analysis, summability, resurgence, formal solutions, integrability, and several algebraic aspects of differential and difference equations.