Author: George Boole
Publisher: Courier Corporation
ISBN: 0486488268
Category : Mathematics
Languages : en
Pages : 514
Book Description
Authoritative account of the development of Boole's ideas in logic and probability theory ranges from The Mathematical Analysis of Logic to the end of his career. The Laws of Thought formed the most systematic statement of Boole's theories; this volume contains incomplete studies intended for a follow-up volume. 1952 edition.
Studies in Logic and Probability
Author: George Boole
Publisher: Courier Corporation
ISBN: 0486488268
Category : Mathematics
Languages : en
Pages : 514
Book Description
Authoritative account of the development of Boole's ideas in logic and probability theory ranges from The Mathematical Analysis of Logic to the end of his career. The Laws of Thought formed the most systematic statement of Boole's theories; this volume contains incomplete studies intended for a follow-up volume. 1952 edition.
Publisher: Courier Corporation
ISBN: 0486488268
Category : Mathematics
Languages : en
Pages : 514
Book Description
Authoritative account of the development of Boole's ideas in logic and probability theory ranges from The Mathematical Analysis of Logic to the end of his career. The Laws of Thought formed the most systematic statement of Boole's theories; this volume contains incomplete studies intended for a follow-up volume. 1952 edition.
Boole's Logic and Probability
Author: T. Hailperin
Publisher: Elsevier
ISBN: 0080880053
Category : Mathematics
Languages : en
Pages : 441
Book Description
Since the publication of the first edition in 1976, there has been a notable increase of interest in the development of logic. This is evidenced by the several conferences on the history of logic, by a journal devoted to the subject, and by an accumulation of new results. This increased activity and the new results - the chief one being that Boole's work in probability is best viewed as a probability logic - were influential circumstances conducive to a new edition.Chapter 1, presenting Boole's ideas on a mathematical treatment of logic, from their emergence in his early 1847 work on through to his immediate successors, has been considerably enlarged. Chapter 2 includes additional discussion of the ``uninterpretable'' notion, both semantically and syntactically. Chapter 3 now includes a revival of Boole's abandoned propositional logic and, also, a discussion of his hitherto unnoticed brush with ancient formal logic. Chapter 5 has an improved explanation of why Boole's probability method works. Chapter 6, Applications and Probability Logic, is a new addition. Changes from the first edition have brought about a three-fold increase in the bibliography.
Publisher: Elsevier
ISBN: 0080880053
Category : Mathematics
Languages : en
Pages : 441
Book Description
Since the publication of the first edition in 1976, there has been a notable increase of interest in the development of logic. This is evidenced by the several conferences on the history of logic, by a journal devoted to the subject, and by an accumulation of new results. This increased activity and the new results - the chief one being that Boole's work in probability is best viewed as a probability logic - were influential circumstances conducive to a new edition.Chapter 1, presenting Boole's ideas on a mathematical treatment of logic, from their emergence in his early 1847 work on through to his immediate successors, has been considerably enlarged. Chapter 2 includes additional discussion of the ``uninterpretable'' notion, both semantically and syntactically. Chapter 3 now includes a revival of Boole's abandoned propositional logic and, also, a discussion of his hitherto unnoticed brush with ancient formal logic. Chapter 5 has an improved explanation of why Boole's probability method works. Chapter 6, Applications and Probability Logic, is a new addition. Changes from the first edition have brought about a three-fold increase in the bibliography.
An Introduction to Probability and Inductive Logic
Author: Ian Hacking
Publisher: Cambridge University Press
ISBN: 9780521775014
Category : Mathematics
Languages : en
Pages : 326
Book Description
An introductory 2001 textbook on probability and induction written by a foremost philosopher of science.
Publisher: Cambridge University Press
ISBN: 9780521775014
Category : Mathematics
Languages : en
Pages : 326
Book Description
An introductory 2001 textbook on probability and induction written by a foremost philosopher of science.
Handbook of the Logic of Argument and Inference
Author: R.H. Johnson
Publisher: Elsevier
ISBN: 0080532918
Category : Computers
Languages : en
Pages : 509
Book Description
The Handbook of the Logic of Argument and Inference is an authoritative reference work in a single volume, designed for the attention of senior undergraduates, graduate students and researchers in all the leading research areas concerned with the logic of practical argument and inference. After an introductory chapter, the role of standard logics is surveyed in two chapters. These chapters can serve as a mini-course for interested readers, in deductive and inductive logic, or as a refresher. Then follow two chapters of criticism; one the internal critique and the other the empirical critique. The first deals with objections to standard logics (as theories of argument and inference) arising from the research programme in philosophical logic. The second canvasses criticisms arising from work in cognitive and experimental psychology. The next five chapters deal with developments in dialogue logic, interrogative logic, informal logic, probability logic and artificial intelligence. The last chapter surveys formal approaches to practical reasoning and anticipates possible future developments. Taken as a whole the Handbook is a single-volume indication of the present state of the logic of argument and inference at its conceptual and theoretical best. Future editions will periodically incorporate significant new developments.
Publisher: Elsevier
ISBN: 0080532918
Category : Computers
Languages : en
Pages : 509
Book Description
The Handbook of the Logic of Argument and Inference is an authoritative reference work in a single volume, designed for the attention of senior undergraduates, graduate students and researchers in all the leading research areas concerned with the logic of practical argument and inference. After an introductory chapter, the role of standard logics is surveyed in two chapters. These chapters can serve as a mini-course for interested readers, in deductive and inductive logic, or as a refresher. Then follow two chapters of criticism; one the internal critique and the other the empirical critique. The first deals with objections to standard logics (as theories of argument and inference) arising from the research programme in philosophical logic. The second canvasses criticisms arising from work in cognitive and experimental psychology. The next five chapters deal with developments in dialogue logic, interrogative logic, informal logic, probability logic and artificial intelligence. The last chapter surveys formal approaches to practical reasoning and anticipates possible future developments. Taken as a whole the Handbook is a single-volume indication of the present state of the logic of argument and inference at its conceptual and theoretical best. Future editions will periodically incorporate significant new developments.
Probability Theory
Author:
Publisher: Allied Publishers
ISBN: 9788177644517
Category :
Languages : en
Pages : 436
Book Description
Probability theory
Publisher: Allied Publishers
ISBN: 9788177644517
Category :
Languages : en
Pages : 436
Book Description
Probability theory
Basic Discrete Mathematics: Logic, Set Theory, And Probability
Author: Richard Kohar
Publisher: World Scientific Publishing Company
ISBN: 9814730416
Category : Mathematics
Languages : en
Pages : 733
Book Description
This lively introductory text exposes the student in the humanities to the world of discrete mathematics. A problem-solving based approach grounded in the ideas of George Pólya are at the heart of this book. Students learn to handle and solve new problems on their own. A straightforward, clear writing style and well-crafted examples with diagrams invite the students to develop into precise and critical thinkers. Particular attention has been given to the material that some students find challenging, such as proofs. This book illustrates how to spot invalid arguments, to enumerate possibilities, and to construct probabilities. It also presents case studies to students about the possible detrimental effects of ignoring these basic principles. The book is invaluable for a discrete and finite mathematics course at the freshman undergraduate level or for self-study since there are full solutions to the exercises in an appendix.'Written with clarity, humor and relevant real-world examples, Basic Discrete Mathematics is a wonderful introduction to discrete mathematical reasoning.'- Arthur Benjamin, Professor of Mathematics at Harvey Mudd College, and author of The Magic of Math
Publisher: World Scientific Publishing Company
ISBN: 9814730416
Category : Mathematics
Languages : en
Pages : 733
Book Description
This lively introductory text exposes the student in the humanities to the world of discrete mathematics. A problem-solving based approach grounded in the ideas of George Pólya are at the heart of this book. Students learn to handle and solve new problems on their own. A straightforward, clear writing style and well-crafted examples with diagrams invite the students to develop into precise and critical thinkers. Particular attention has been given to the material that some students find challenging, such as proofs. This book illustrates how to spot invalid arguments, to enumerate possibilities, and to construct probabilities. It also presents case studies to students about the possible detrimental effects of ignoring these basic principles. The book is invaluable for a discrete and finite mathematics course at the freshman undergraduate level or for self-study since there are full solutions to the exercises in an appendix.'Written with clarity, humor and relevant real-world examples, Basic Discrete Mathematics is a wonderful introduction to discrete mathematical reasoning.'- Arthur Benjamin, Professor of Mathematics at Harvey Mudd College, and author of The Magic of Math
Cognition and Conditionals
Author: Mike Oaksford
Publisher: Oxford University Press, USA
ISBN: 0199233292
Category : Language Arts & Disciplines
Languages : en
Pages : 420
Book Description
The conditional, if...then, is probably the most important term in natural language and forms the core of systems of logic and mental representation. Cognition and Conditionals is the first volume for over 20 years that brings together recent developments in the cognitive science and psychology of conditional reasoning.
Publisher: Oxford University Press, USA
ISBN: 0199233292
Category : Language Arts & Disciplines
Languages : en
Pages : 420
Book Description
The conditional, if...then, is probably the most important term in natural language and forms the core of systems of logic and mental representation. Cognition and Conditionals is the first volume for over 20 years that brings together recent developments in the cognitive science and psychology of conditional reasoning.
Studies in Inductive Logic and Probability
Author: Rudolf Carnap (red.)
Publisher: Univ of California Press
ISBN: 9780520018662
Category : Mathematics
Languages : en
Pages : 274
Book Description
Publisher: Univ of California Press
ISBN: 9780520018662
Category : Mathematics
Languages : en
Pages : 274
Book Description
Truth, Probability and Paradox
Author: John Leslie Mackie
Publisher: Oxford University Press, USA
ISBN: 0198244029
Category : Philosophy
Languages : en
Pages : 322
Book Description
Classic work by one of the most brilliant figures in post-war analytic philosophy.
Publisher: Oxford University Press, USA
ISBN: 0198244029
Category : Philosophy
Languages : en
Pages : 322
Book Description
Classic work by one of the most brilliant figures in post-war analytic philosophy.
Quantum, Probability, Logic
Author: Meir Hemmo
Publisher: Springer Nature
ISBN: 3030343162
Category : Science
Languages : en
Pages : 635
Book Description
This volume provides a broad perspective on the state of the art in the philosophy and conceptual foundations of quantum mechanics. Its essays take their starting point in the work and influence of Itamar Pitowsky, who has greatly influenced our understanding of what is characteristically non-classical about quantum probabilities and quantum logic, and this serves as a vantage point from which they reflect on key ongoing debates in the field. Readers will find a definitive and multi-faceted description of the major open questions in the foundations of quantum mechanics today, including: Is quantum mechanics a new theory of (contextual) probability? Should the quantum state be interpreted objectively or subjectively? How should probability be understood in the Everett interpretation of quantum mechanics? What are the limits of the physical implementation of computation? The impact of this volume goes beyond the exposition of Pitowsky’s influence: it provides a unique collection of essays by leading thinkers containing profound reflections on the field. Chapter 1. Classical logic, classical probability, and quantum mechanics (Samson Abramsky) Chapter 2. Why Scientific Realists Should Reject the Second Dogma of Quantum Mechanic (Valia Allori) Chapter 3. Unscrambling Subjective and Epistemic Probabilities (Guido Bacciagaluppi) Chapter 4. Wigner’s Friend as a Rational Agent (Veronika Baumann, Časlav Brukner) Chapter 5. Pitowsky's Epistemic Interpretation of Quantum Mechanics and the PBR Theorem (Yemima Ben-Menahem) Chapter 6. On the Mathematical Constitution and Explanation of Physical Facts (Joseph Berkovitz) Chapter 7. Everettian probabilities, the Deutsch-Wallace theorem and the Principal Principle (Harvey R. Brown, Gal Ben Porath) Chapter 8. ‘Two Dogmas’ Redu (Jeffrey Bub) Chapter 9. Physical Computability Theses (B. Jack Copeland, Oron Shagrir) Chapter 10. Agents in Healey’s Pragmatist Quantum Theory: A Comparison with Pitowsky’s Approach to Quantum Mechanics (Mauro Dorato) Chapter 11. Quantum Mechanics As a Theory of Observables and States and, Thereby, As a Theory of Probability (John Earman, Laura Ruetsche) Chapter 12. The Measurement Problem and two Dogmas about Quantum Mechanic (Laura Felline) Chapter 13. There Is More Than One Way to Skin a Cat: Quantum Information Principles In a Finite World(Amit Hagar) Chapter 14. Is Quantum Mechanics a New Theory of Probability? (Richard Healey) Chapter 15. Quantum Mechanics as a Theory of Probability (Meir Hemmo, Orly Shenker) Chapter 16. On the Three Types of Bell's Inequalities (Gábor Hofer-Szabó) Chapter 17. On the Descriptive Power of Probability Logic (Ehud Hrushovski) Chapter 18. The Argument against Quantum Computers (Gil Kalai) Chapter 19. Why a Relativistic Quantum Mechanical World Must be Indeterministic (Avi Levy, Meir Hemmo) Chapter 20. Subjectivists about Quantum Probabilities Should be Realists about Quantum States (Wayne C. Myrvold) Chapter 21. The Relativistic Einstein-Podolsky-Rosen Argument (Michael Redhead) Chapter 22. What price statistical independence? How Einstein missed the photon.(Simon Saunders) Chapter 23. How (Maximally) Contextual is Quantum Mechanics? (Andrew W. Simmons) Chapter 24. Roots and (Re)Sources of Value (In)Definiteness Versus Contextuality (Karl Svozil) Chapter 25: Schrödinger’s Reaction to the EPR Paper (Jos Uffink) Chapter 26. Derivations of the Born Rule (Lev Vaidman) Chapter 27. Dynamical States and the Conventionality of (Non-) Classicality (Alexander Wilce).
Publisher: Springer Nature
ISBN: 3030343162
Category : Science
Languages : en
Pages : 635
Book Description
This volume provides a broad perspective on the state of the art in the philosophy and conceptual foundations of quantum mechanics. Its essays take their starting point in the work and influence of Itamar Pitowsky, who has greatly influenced our understanding of what is characteristically non-classical about quantum probabilities and quantum logic, and this serves as a vantage point from which they reflect on key ongoing debates in the field. Readers will find a definitive and multi-faceted description of the major open questions in the foundations of quantum mechanics today, including: Is quantum mechanics a new theory of (contextual) probability? Should the quantum state be interpreted objectively or subjectively? How should probability be understood in the Everett interpretation of quantum mechanics? What are the limits of the physical implementation of computation? The impact of this volume goes beyond the exposition of Pitowsky’s influence: it provides a unique collection of essays by leading thinkers containing profound reflections on the field. Chapter 1. Classical logic, classical probability, and quantum mechanics (Samson Abramsky) Chapter 2. Why Scientific Realists Should Reject the Second Dogma of Quantum Mechanic (Valia Allori) Chapter 3. Unscrambling Subjective and Epistemic Probabilities (Guido Bacciagaluppi) Chapter 4. Wigner’s Friend as a Rational Agent (Veronika Baumann, Časlav Brukner) Chapter 5. Pitowsky's Epistemic Interpretation of Quantum Mechanics and the PBR Theorem (Yemima Ben-Menahem) Chapter 6. On the Mathematical Constitution and Explanation of Physical Facts (Joseph Berkovitz) Chapter 7. Everettian probabilities, the Deutsch-Wallace theorem and the Principal Principle (Harvey R. Brown, Gal Ben Porath) Chapter 8. ‘Two Dogmas’ Redu (Jeffrey Bub) Chapter 9. Physical Computability Theses (B. Jack Copeland, Oron Shagrir) Chapter 10. Agents in Healey’s Pragmatist Quantum Theory: A Comparison with Pitowsky’s Approach to Quantum Mechanics (Mauro Dorato) Chapter 11. Quantum Mechanics As a Theory of Observables and States and, Thereby, As a Theory of Probability (John Earman, Laura Ruetsche) Chapter 12. The Measurement Problem and two Dogmas about Quantum Mechanic (Laura Felline) Chapter 13. There Is More Than One Way to Skin a Cat: Quantum Information Principles In a Finite World(Amit Hagar) Chapter 14. Is Quantum Mechanics a New Theory of Probability? (Richard Healey) Chapter 15. Quantum Mechanics as a Theory of Probability (Meir Hemmo, Orly Shenker) Chapter 16. On the Three Types of Bell's Inequalities (Gábor Hofer-Szabó) Chapter 17. On the Descriptive Power of Probability Logic (Ehud Hrushovski) Chapter 18. The Argument against Quantum Computers (Gil Kalai) Chapter 19. Why a Relativistic Quantum Mechanical World Must be Indeterministic (Avi Levy, Meir Hemmo) Chapter 20. Subjectivists about Quantum Probabilities Should be Realists about Quantum States (Wayne C. Myrvold) Chapter 21. The Relativistic Einstein-Podolsky-Rosen Argument (Michael Redhead) Chapter 22. What price statistical independence? How Einstein missed the photon.(Simon Saunders) Chapter 23. How (Maximally) Contextual is Quantum Mechanics? (Andrew W. Simmons) Chapter 24. Roots and (Re)Sources of Value (In)Definiteness Versus Contextuality (Karl Svozil) Chapter 25: Schrödinger’s Reaction to the EPR Paper (Jos Uffink) Chapter 26. Derivations of the Born Rule (Lev Vaidman) Chapter 27. Dynamical States and the Conventionality of (Non-) Classicality (Alexander Wilce).