Author: Erik Lindström
Publisher: CRC Press
ISBN: 1315362554
Category : Business & Economics
Languages : en
Pages : 384
Book Description
Statistics for Finance develops students’ professional skills in statistics with applications in finance. Developed from the authors’ courses at the Technical University of Denmark and Lund University, the text bridges the gap between classical, rigorous treatments of financial mathematics that rarely connect concepts to data and books on econometrics and time series analysis that do not cover specific problems related to option valuation. The book discusses applications of financial derivatives pertaining to risk assessment and elimination. The authors cover various statistical and mathematical techniques, including linear and nonlinear time series analysis, stochastic calculus models, stochastic differential equations, Itō’s formula, the Black–Scholes model, the generalized method-of-moments, and the Kalman filter. They explain how these tools are used to price financial derivatives, identify interest rate models, value bonds, estimate parameters, and much more. This textbook will help students understand and manage empirical research in financial engineering. It includes examples of how the statistical tools can be used to improve value-at-risk calculations and other issues. In addition, end-of-chapter exercises develop students’ financial reasoning skills.
Statistics for Finance
Author: Erik Lindström
Publisher: CRC Press
ISBN: 1315362554
Category : Business & Economics
Languages : en
Pages : 384
Book Description
Statistics for Finance develops students’ professional skills in statistics with applications in finance. Developed from the authors’ courses at the Technical University of Denmark and Lund University, the text bridges the gap between classical, rigorous treatments of financial mathematics that rarely connect concepts to data and books on econometrics and time series analysis that do not cover specific problems related to option valuation. The book discusses applications of financial derivatives pertaining to risk assessment and elimination. The authors cover various statistical and mathematical techniques, including linear and nonlinear time series analysis, stochastic calculus models, stochastic differential equations, Itō’s formula, the Black–Scholes model, the generalized method-of-moments, and the Kalman filter. They explain how these tools are used to price financial derivatives, identify interest rate models, value bonds, estimate parameters, and much more. This textbook will help students understand and manage empirical research in financial engineering. It includes examples of how the statistical tools can be used to improve value-at-risk calculations and other issues. In addition, end-of-chapter exercises develop students’ financial reasoning skills.
Publisher: CRC Press
ISBN: 1315362554
Category : Business & Economics
Languages : en
Pages : 384
Book Description
Statistics for Finance develops students’ professional skills in statistics with applications in finance. Developed from the authors’ courses at the Technical University of Denmark and Lund University, the text bridges the gap between classical, rigorous treatments of financial mathematics that rarely connect concepts to data and books on econometrics and time series analysis that do not cover specific problems related to option valuation. The book discusses applications of financial derivatives pertaining to risk assessment and elimination. The authors cover various statistical and mathematical techniques, including linear and nonlinear time series analysis, stochastic calculus models, stochastic differential equations, Itō’s formula, the Black–Scholes model, the generalized method-of-moments, and the Kalman filter. They explain how these tools are used to price financial derivatives, identify interest rate models, value bonds, estimate parameters, and much more. This textbook will help students understand and manage empirical research in financial engineering. It includes examples of how the statistical tools can be used to improve value-at-risk calculations and other issues. In addition, end-of-chapter exercises develop students’ financial reasoning skills.
A Course on Statistics for Finance
Author: Stanley L. Sclove
Publisher: CRC Press
ISBN: 1439892547
Category : Business & Economics
Languages : en
Pages : 281
Book Description
Taking a data-driven approach, A Course on Statistics for Finance presents statistical methods for financial investment analysis. The author introduces regression analysis, time series analysis, and multivariate analysis step by step using models and methods from finance. The book begins with a review of basic statistics, including descriptive statistics, kinds of variables, and types of data sets. It then discusses regression analysis in general terms and in terms of financial investment models, such as the capital asset pricing model and the Fama/French model. It also describes mean-variance portfolio analysis and concludes with a focus on time series analysis. Providing the connection between elementary statistics courses and quantitative finance courses, this text helps both existing and future quants improve their data analysis skills and better understand the modeling process.
Publisher: CRC Press
ISBN: 1439892547
Category : Business & Economics
Languages : en
Pages : 281
Book Description
Taking a data-driven approach, A Course on Statistics for Finance presents statistical methods for financial investment analysis. The author introduces regression analysis, time series analysis, and multivariate analysis step by step using models and methods from finance. The book begins with a review of basic statistics, including descriptive statistics, kinds of variables, and types of data sets. It then discusses regression analysis in general terms and in terms of financial investment models, such as the capital asset pricing model and the Fama/French model. It also describes mean-variance portfolio analysis and concludes with a focus on time series analysis. Providing the connection between elementary statistics courses and quantitative finance courses, this text helps both existing and future quants improve their data analysis skills and better understand the modeling process.
Probability and Statistics for Finance
Author: Svetlozar T. Rachev
Publisher: John Wiley & Sons
ISBN: 0470906324
Category : Business & Economics
Languages : en
Pages : 676
Book Description
A comprehensive look at how probability and statistics is applied to the investment process Finance has become increasingly more quantitative, drawing on techniques in probability and statistics that many finance practitioners have not had exposure to before. In order to keep up, you need a firm understanding of this discipline. Probability and Statistics for Finance addresses this issue by showing you how to apply quantitative methods to portfolios, and in all matter of your practices, in a clear, concise manner. Informative and accessible, this guide starts off with the basics and builds to an intermediate level of mastery. • Outlines an array of topics in probability and statistics and how to apply them in the world of finance • Includes detailed discussions of descriptive statistics, basic probability theory, inductive statistics, and multivariate analysis • Offers real-world illustrations of the issues addressed throughout the text The authors cover a wide range of topics in this book, which can be used by all finance professionals as well as students aspiring to enter the field of finance.
Publisher: John Wiley & Sons
ISBN: 0470906324
Category : Business & Economics
Languages : en
Pages : 676
Book Description
A comprehensive look at how probability and statistics is applied to the investment process Finance has become increasingly more quantitative, drawing on techniques in probability and statistics that many finance practitioners have not had exposure to before. In order to keep up, you need a firm understanding of this discipline. Probability and Statistics for Finance addresses this issue by showing you how to apply quantitative methods to portfolios, and in all matter of your practices, in a clear, concise manner. Informative and accessible, this guide starts off with the basics and builds to an intermediate level of mastery. • Outlines an array of topics in probability and statistics and how to apply them in the world of finance • Includes detailed discussions of descriptive statistics, basic probability theory, inductive statistics, and multivariate analysis • Offers real-world illustrations of the issues addressed throughout the text The authors cover a wide range of topics in this book, which can be used by all finance professionals as well as students aspiring to enter the field of finance.
Financial Statistics and Mathematical Finance
Author: Ansgar Steland
Publisher: John Wiley & Sons
ISBN: 1118316568
Category : Business & Economics
Languages : en
Pages : 355
Book Description
Mathematical finance has grown into a huge area of research which requires a lot of care and a large number of sophisticated mathematical tools. Mathematically rigorous and yet accessible to advanced level practitioners and mathematicians alike, it considers various aspects of the application of statistical methods in finance and illustrates some of the many ways that statistical tools are used in financial applications. Financial Statistics and Mathematical Finance: Provides an introduction to the basics of financial statistics and mathematical finance. Explains the use and importance of statistical methods in econometrics and financial engineering. Illustrates the importance of derivatives and calculus to aid understanding in methods and results. Looks at advanced topics such as martingale theory, stochastic processes and stochastic integration. Features examples throughout to illustrate applications in mathematical and statistical finance. Is supported by an accompanying website featuring R code and data sets. Financial Statistics and Mathematical Finance introduces the financial methodology and the relevant mathematical tools in a style that is both mathematically rigorous and yet accessible to advanced level practitioners and mathematicians alike, both graduate students and researchers in statistics, finance, econometrics and business administration will benefit from this book.
Publisher: John Wiley & Sons
ISBN: 1118316568
Category : Business & Economics
Languages : en
Pages : 355
Book Description
Mathematical finance has grown into a huge area of research which requires a lot of care and a large number of sophisticated mathematical tools. Mathematically rigorous and yet accessible to advanced level practitioners and mathematicians alike, it considers various aspects of the application of statistical methods in finance and illustrates some of the many ways that statistical tools are used in financial applications. Financial Statistics and Mathematical Finance: Provides an introduction to the basics of financial statistics and mathematical finance. Explains the use and importance of statistical methods in econometrics and financial engineering. Illustrates the importance of derivatives and calculus to aid understanding in methods and results. Looks at advanced topics such as martingale theory, stochastic processes and stochastic integration. Features examples throughout to illustrate applications in mathematical and statistical finance. Is supported by an accompanying website featuring R code and data sets. Financial Statistics and Mathematical Finance introduces the financial methodology and the relevant mathematical tools in a style that is both mathematically rigorous and yet accessible to advanced level practitioners and mathematicians alike, both graduate students and researchers in statistics, finance, econometrics and business administration will benefit from this book.
Statistics and Data Analysis for Financial Engineering
Author: David Ruppert
Publisher: Springer
ISBN: 1493926144
Category : Business & Economics
Languages : en
Pages : 736
Book Description
The new edition of this influential textbook, geared towards graduate or advanced undergraduate students, teaches the statistics necessary for financial engineering. In doing so, it illustrates concepts using financial markets and economic data, R Labs with real-data exercises, and graphical and analytic methods for modeling and diagnosing modeling errors. These methods are critical because financial engineers now have access to enormous quantities of data. To make use of this data, the powerful methods in this book for working with quantitative information, particularly about volatility and risks, are essential. Strengths of this fully-revised edition include major additions to the R code and the advanced topics covered. Individual chapters cover, among other topics, multivariate distributions, copulas, Bayesian computations, risk management, and cointegration. Suggested prerequisites are basic knowledge of statistics and probability, matrices and linear algebra, and calculus. There is an appendix on probability, statistics and linear algebra. Practicing financial engineers will also find this book of interest.
Publisher: Springer
ISBN: 1493926144
Category : Business & Economics
Languages : en
Pages : 736
Book Description
The new edition of this influential textbook, geared towards graduate or advanced undergraduate students, teaches the statistics necessary for financial engineering. In doing so, it illustrates concepts using financial markets and economic data, R Labs with real-data exercises, and graphical and analytic methods for modeling and diagnosing modeling errors. These methods are critical because financial engineers now have access to enormous quantities of data. To make use of this data, the powerful methods in this book for working with quantitative information, particularly about volatility and risks, are essential. Strengths of this fully-revised edition include major additions to the R code and the advanced topics covered. Individual chapters cover, among other topics, multivariate distributions, copulas, Bayesian computations, risk management, and cointegration. Suggested prerequisites are basic knowledge of statistics and probability, matrices and linear algebra, and calculus. There is an appendix on probability, statistics and linear algebra. Practicing financial engineers will also find this book of interest.
Statistics of Financial Markets
Author: Szymon Borak
Publisher: Springer Science & Business Media
ISBN: 3642339298
Category : Business & Economics
Languages : en
Pages : 266
Book Description
Practice makes perfect. Therefore the best method of mastering models is working with them. This book contains a large collection of exercises and solutions which will help explain the statistics of financial markets. These practical examples are carefully presented and provide computational solutions to specific problems, all of which are calculated using R and Matlab. This study additionally looks at the concept of corresponding Quantlets, the name given to these program codes and which follow the name scheme SFSxyz123. The book is divided into three main parts, in which option pricing, time series analysis and advanced quantitative statistical techniques in finance is thoroughly discussed. The authors have overall successfully created the ideal balance between theoretical presentation and practical challenges.
Publisher: Springer Science & Business Media
ISBN: 3642339298
Category : Business & Economics
Languages : en
Pages : 266
Book Description
Practice makes perfect. Therefore the best method of mastering models is working with them. This book contains a large collection of exercises and solutions which will help explain the statistics of financial markets. These practical examples are carefully presented and provide computational solutions to specific problems, all of which are calculated using R and Matlab. This study additionally looks at the concept of corresponding Quantlets, the name given to these program codes and which follow the name scheme SFSxyz123. The book is divided into three main parts, in which option pricing, time series analysis and advanced quantitative statistical techniques in finance is thoroughly discussed. The authors have overall successfully created the ideal balance between theoretical presentation and practical challenges.
Financial Statistics and Data Analytics
Author: Shuangzhe Li
Publisher: MDPI
ISBN: 3039439758
Category : Business & Economics
Languages : en
Pages : 232
Book Description
Modern financial management is largely about risk management, which is increasingly data-driven. The problem is how to extract information from the data overload. It is here that advanced statistical and machine learning techniques can help. Accordingly, finance, statistics, and data analytics go hand in hand. The purpose of this book is to bring the state-of-art research in these three areas to the fore and especially research that juxtaposes these three.
Publisher: MDPI
ISBN: 3039439758
Category : Business & Economics
Languages : en
Pages : 232
Book Description
Modern financial management is largely about risk management, which is increasingly data-driven. The problem is how to extract information from the data overload. It is here that advanced statistical and machine learning techniques can help. Accordingly, finance, statistics, and data analytics go hand in hand. The purpose of this book is to bring the state-of-art research in these three areas to the fore and especially research that juxtaposes these three.
Statistics for Finance
Author: Erik Lindström
Publisher: CRC Press
ISBN: 1498785891
Category : Business & Economics
Languages : en
Pages : 303
Book Description
Statistics for Finance develops students’ professional skills in statistics with applications in finance. Developed from the authors’ courses at the Technical University of Denmark and Lund University, the text bridges the gap between classical, rigorous treatments of financial mathematics that rarely connect concepts to data and books on econometrics and time series analysis that do not cover specific problems related to option valuation. The book discusses applications of financial derivatives pertaining to risk assessment and elimination. The authors cover various statistical and mathematical techniques, including linear and nonlinear time series analysis, stochastic calculus models, stochastic differential equations, Itō’s formula, the Black–Scholes model, the generalized method-of-moments, and the Kalman filter. They explain how these tools are used to price financial derivatives, identify interest rate models, value bonds, estimate parameters, and much more. This textbook will help students understand and manage empirical research in financial engineering. It includes examples of how the statistical tools can be used to improve value-at-risk calculations and other issues. In addition, end-of-chapter exercises develop students’ financial reasoning skills.
Publisher: CRC Press
ISBN: 1498785891
Category : Business & Economics
Languages : en
Pages : 303
Book Description
Statistics for Finance develops students’ professional skills in statistics with applications in finance. Developed from the authors’ courses at the Technical University of Denmark and Lund University, the text bridges the gap between classical, rigorous treatments of financial mathematics that rarely connect concepts to data and books on econometrics and time series analysis that do not cover specific problems related to option valuation. The book discusses applications of financial derivatives pertaining to risk assessment and elimination. The authors cover various statistical and mathematical techniques, including linear and nonlinear time series analysis, stochastic calculus models, stochastic differential equations, Itō’s formula, the Black–Scholes model, the generalized method-of-moments, and the Kalman filter. They explain how these tools are used to price financial derivatives, identify interest rate models, value bonds, estimate parameters, and much more. This textbook will help students understand and manage empirical research in financial engineering. It includes examples of how the statistical tools can be used to improve value-at-risk calculations and other issues. In addition, end-of-chapter exercises develop students’ financial reasoning skills.
Statistical Tools for Finance and Insurance
Author: Pavel Čižek
Publisher: Springer Science & Business Media
ISBN: 9783540221890
Category : Business & Economics
Languages : en
Pages : 534
Book Description
Statistical Tools in Finance and Insurance presents ready-to-use solutions, theoretical developments and method construction for many practical problems in quantitative finance and insurance. Written by practitioners and leading academics in the field, this book offers a unique combination of topics from which every market analyst and risk manager will benefit. Covering topics such as heavy tailed distributions, implied trinomial trees, support vector machines, valuation of mortgage-backed securities, pricing of CAT bonds, simulation of risk processes and ruin probability approximation, the book does not only offer practitioners insight into new methods for their applications, but it also gives theoreticians insight into the applicability of the stochastic technology. Additionally, the book provides the tools, instruments and (online) algorithms for recent techniques in quantitative finance and modern treatments in insurance calculations. Written in an accessible and engaging style, this self-instructional book makes a good use of extensive examples and full explanations. Thenbsp;design of the text links theory and computational tools in an innovative way. All Quantlets for the calculation of examples given in the text are supported by the academic edition of XploRe and may be executed via XploRe Quantlet Server (XQS). The downloadable electronic edition of the book enables one to run, modify, and enhance all Quantlets on the spot.
Publisher: Springer Science & Business Media
ISBN: 9783540221890
Category : Business & Economics
Languages : en
Pages : 534
Book Description
Statistical Tools in Finance and Insurance presents ready-to-use solutions, theoretical developments and method construction for many practical problems in quantitative finance and insurance. Written by practitioners and leading academics in the field, this book offers a unique combination of topics from which every market analyst and risk manager will benefit. Covering topics such as heavy tailed distributions, implied trinomial trees, support vector machines, valuation of mortgage-backed securities, pricing of CAT bonds, simulation of risk processes and ruin probability approximation, the book does not only offer practitioners insight into new methods for their applications, but it also gives theoreticians insight into the applicability of the stochastic technology. Additionally, the book provides the tools, instruments and (online) algorithms for recent techniques in quantitative finance and modern treatments in insurance calculations. Written in an accessible and engaging style, this self-instructional book makes a good use of extensive examples and full explanations. Thenbsp;design of the text links theory and computational tools in an innovative way. All Quantlets for the calculation of examples given in the text are supported by the academic edition of XploRe and may be executed via XploRe Quantlet Server (XQS). The downloadable electronic edition of the book enables one to run, modify, and enhance all Quantlets on the spot.
Methods and Applications of Statistics in Business, Finance, and Management Science
Author: Narayanaswamy Balakrishnan
Publisher: John Wiley & Sons
ISBN: 0470405104
Category : Mathematics
Languages : en
Pages : 735
Book Description
Inspired by the Encyclopedia of Statistical Sciences, Second Edition, this volume presents the tools and techniques that are essential for carrying out best practices in the modern business world The collection and analysis of quantitative data drives some of the most important conclusions that are drawn in today's business world, such as the preferences of a customer base, the quality of manufactured products, the marketing of products, and the availability of financial resources. As a result, it is essential for individuals working in this environment to have the knowledge and skills to interpret and use statistical techniques in various scenarios. Addressing this need, Methods and Applications of Statistics in Business, Finance, and Management Science serves as a single, one-of-a-kind resource that guides readers through the use of common statistical practices by presenting real-world applications from the fields of business, economics, finance, operations research, and management science. Uniting established literature with the latest research, this volume features classic articles from the acclaimed Encyclopedia of Statistical Sciences, Second Edition along with brand-new contributions written by today's leading academics and practitioners. The result is a compilation that explores classic methodology and new topics, including: Analytical methods for risk management Statistical modeling for online auctions Ranking and selection in mutual funds Uses of Black-Scholes formula in finance Data mining in prediction markets From auditing and marketing to stock market price indices and banking, the presented literature sheds light on the use of quantitative methods in research relating to common financial applications. In addition, the book supplies insight on common uses of statistical techniques such as Bayesian methods, optimization, simulation, forecasting, mathematical modeling, financial time series, and data mining in modern research. Providing a blend of traditional methodology and the latest research, Methods and Applications of Statistics in Business, Finance, and Management Science is an excellent reference for researchers, managers, consultants, and students in the fields of business, management science, operations research, supply chain management, mathematical finance, and economics who must understand statistical literature and carry out quantitative practices to make smart business decisions in their everyday work.
Publisher: John Wiley & Sons
ISBN: 0470405104
Category : Mathematics
Languages : en
Pages : 735
Book Description
Inspired by the Encyclopedia of Statistical Sciences, Second Edition, this volume presents the tools and techniques that are essential for carrying out best practices in the modern business world The collection and analysis of quantitative data drives some of the most important conclusions that are drawn in today's business world, such as the preferences of a customer base, the quality of manufactured products, the marketing of products, and the availability of financial resources. As a result, it is essential for individuals working in this environment to have the knowledge and skills to interpret and use statistical techniques in various scenarios. Addressing this need, Methods and Applications of Statistics in Business, Finance, and Management Science serves as a single, one-of-a-kind resource that guides readers through the use of common statistical practices by presenting real-world applications from the fields of business, economics, finance, operations research, and management science. Uniting established literature with the latest research, this volume features classic articles from the acclaimed Encyclopedia of Statistical Sciences, Second Edition along with brand-new contributions written by today's leading academics and practitioners. The result is a compilation that explores classic methodology and new topics, including: Analytical methods for risk management Statistical modeling for online auctions Ranking and selection in mutual funds Uses of Black-Scholes formula in finance Data mining in prediction markets From auditing and marketing to stock market price indices and banking, the presented literature sheds light on the use of quantitative methods in research relating to common financial applications. In addition, the book supplies insight on common uses of statistical techniques such as Bayesian methods, optimization, simulation, forecasting, mathematical modeling, financial time series, and data mining in modern research. Providing a blend of traditional methodology and the latest research, Methods and Applications of Statistics in Business, Finance, and Management Science is an excellent reference for researchers, managers, consultants, and students in the fields of business, management science, operations research, supply chain management, mathematical finance, and economics who must understand statistical literature and carry out quantitative practices to make smart business decisions in their everyday work.