Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 600
Book Description
NASA Technical Note
Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 600
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 600
Book Description
Scientific and Technical Aerospace Reports
Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 1460
Book Description
Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 1460
Book Description
Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.
Computer Oriented Analysis of Shell Structures
Author: Richard F. Hartung
Publisher:
ISBN:
Category : Numerical analysis
Languages : en
Pages : 1316
Book Description
Publisher:
ISBN:
Category : Numerical analysis
Languages : en
Pages : 1316
Book Description
Shock and Vibration Computer Programs
Author: Barbara Pilkey
Publisher:
ISBN:
Category : Shock (Mechanics)
Languages : en
Pages : 676
Book Description
Publisher:
ISBN:
Category : Shock (Mechanics)
Languages : en
Pages : 676
Book Description
Proceedings, Third Engineering Mechanics Division Specialty Conference, September 17-19, 1979, the University of Texas at Austin, Austin, Texas
Author: American Society of Civil Engineers. Engineering Mechanics Division
Publisher:
ISBN:
Category : Mechanics, Applied
Languages : en
Pages : 966
Book Description
Publisher:
ISBN:
Category : Mechanics, Applied
Languages : en
Pages : 966
Book Description
Applied Mechanics Reviews
Author:
Publisher:
ISBN:
Category : Mechanics, Applied
Languages : en
Pages : 1090
Book Description
Publisher:
ISBN:
Category : Mechanics, Applied
Languages : en
Pages : 1090
Book Description
Computational Mechanics '86
Author: Genki Yagawa
Publisher: Springer Science & Business Media
ISBN: 443168042X
Category : Science
Languages : en
Pages : 1360
Book Description
It is often said that these days there are too many conferences on general areas of computational mechanics. mechanics. and numer ical methods. vJhile this may be true. the his tory of scientific conferences is itself quite short. According to Abraham Pais (in "Subtle is the Lord ...• " Oxford University Press. 1982. p.80). the first international scientific conference ever held was the Karlsruhe Congress of Chemists. 3-5 September 1860 in Karlsruhe. Germany. There were 127 chemists in attendance. and the participants came from Austria. Belgium. France. Germany. Great Britain. Italy. Mexico. Poland. Russia. Spain. Sweden. and Switzerland. At the top of the agenda of the points to be discussed at this conference was the question: "Shall a difference be made between the expressions molecule and atom?" Pais goes on to note: "The conference did not at once succeed in bringing chemists closer together ... It is possible that the older men were offended by the impetuous behavior and imposing manner of the younger scientists" (see references cited in Pais' book). It may be observed that history. in general. repeats itself. However. at ICCM-86 in Tokyo. roughly 500 participants from both the West and the East were in attendance; there were only scholarly exchanges; the young tried to learn from the more experienced. and a spirit of international academic cooperation prevailed.
Publisher: Springer Science & Business Media
ISBN: 443168042X
Category : Science
Languages : en
Pages : 1360
Book Description
It is often said that these days there are too many conferences on general areas of computational mechanics. mechanics. and numer ical methods. vJhile this may be true. the his tory of scientific conferences is itself quite short. According to Abraham Pais (in "Subtle is the Lord ...• " Oxford University Press. 1982. p.80). the first international scientific conference ever held was the Karlsruhe Congress of Chemists. 3-5 September 1860 in Karlsruhe. Germany. There were 127 chemists in attendance. and the participants came from Austria. Belgium. France. Germany. Great Britain. Italy. Mexico. Poland. Russia. Spain. Sweden. and Switzerland. At the top of the agenda of the points to be discussed at this conference was the question: "Shall a difference be made between the expressions molecule and atom?" Pais goes on to note: "The conference did not at once succeed in bringing chemists closer together ... It is possible that the older men were offended by the impetuous behavior and imposing manner of the younger scientists" (see references cited in Pais' book). It may be observed that history. in general. repeats itself. However. at ICCM-86 in Tokyo. roughly 500 participants from both the West and the East were in attendance; there were only scholarly exchanges; the young tried to learn from the more experienced. and a spirit of international academic cooperation prevailed.
Japanese Science and Technology, 1983-1984
Author: United States. National Aeronautics and Space Administration. Scientific and Technical Information Branch
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 1080
Book Description
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 1080
Book Description
Generalized Differential and Integral Quadrature
Author: Francesco Tornabene
Publisher: Società Editrice Esculapio
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 689
Book Description
The main aim of this book is to analyze the mathematical fundamentals and the main features of the Generalized Differential Quadrature (GDQ) and Generalized Integral Quadrature (GIQ) techniques. Furthermore, another interesting aim of the present book is to shown that from the two numerical techniques mentioned above it is possible to derive two different approaches such as the Strong and Weak Finite Element Methods (SFEM and WFEM), that will be used to solve various structural problems and arbitrarily shaped structures. A general approach to the Differential Quadrature is proposed. The weighting coefficients for different basis functions and grid distributions are determined. Furthermore, the expressions of the principal approximating polynomials and grid distributions, available in the literature, are shown. Besides the classic orthogonal polynomials, a new class of basis functions, which depend on the radial distance between the discretization points, is presented. They are known as Radial Basis Functions (or RBFs). The general expressions for the derivative evaluation can be utilized in the local form to reduce the computational cost. From this concept the Local Generalized Differential Quadrature (LGDQ) method is derived. The Generalized Integral Quadrature (GIQ) technique can be used employing several basis functions, without any restriction on the point distributions for the given definition domain. To better underline these concepts some classical numerical integration schemes are reported, such as the trapezoidal rule or the Simpson method. An alternative approach based on Taylor series is also illustrated to approximate integrals. This technique is named as Generalized Taylor-based Integral Quadrature (GTIQ) method. The major structural theories for the analysis of the mechanical behavior of various structures are presented in depth in the book. In particular, the strong and weak formulations of the corresponding governing equations are discussed and illustrated. Generally speaking, two formulations of the same system of governing equations can be developed, which are respectively the strong and weak (or variational) formulations. Once the governing equations that rule a generic structural problem are obtained, together with the corresponding boundary conditions, a differential system is written. In particular, the Strong Formulation (SF) of the governing equations is obtained. The differentiability requirement, instead, is reduced through a weighted integral statement if the corresponding Weak Formulation (WF) of the governing equations is developed. Thus, an equivalent integral formulation is derived, starting directly from the previous one. In particular, the formulation in hand is obtained by introducing a Lagrangian approximation of the degrees of freedom of the problem. The need of studying arbitrarily shaped domains or characterized by mechanical and geometrical discontinuities leads to the development of new numerical approaches that divide the structure in finite elements. Then, the strong form or the weak form of the fundamental equations are solved inside each element. The fundamental aspects of this technique, which the author defined respectively Strong Formulation Finite Element Method (SFEM) and Weak Formulation Finite Element Method (WFEM), are presented in the book.
Publisher: Società Editrice Esculapio
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 689
Book Description
The main aim of this book is to analyze the mathematical fundamentals and the main features of the Generalized Differential Quadrature (GDQ) and Generalized Integral Quadrature (GIQ) techniques. Furthermore, another interesting aim of the present book is to shown that from the two numerical techniques mentioned above it is possible to derive two different approaches such as the Strong and Weak Finite Element Methods (SFEM and WFEM), that will be used to solve various structural problems and arbitrarily shaped structures. A general approach to the Differential Quadrature is proposed. The weighting coefficients for different basis functions and grid distributions are determined. Furthermore, the expressions of the principal approximating polynomials and grid distributions, available in the literature, are shown. Besides the classic orthogonal polynomials, a new class of basis functions, which depend on the radial distance between the discretization points, is presented. They are known as Radial Basis Functions (or RBFs). The general expressions for the derivative evaluation can be utilized in the local form to reduce the computational cost. From this concept the Local Generalized Differential Quadrature (LGDQ) method is derived. The Generalized Integral Quadrature (GIQ) technique can be used employing several basis functions, without any restriction on the point distributions for the given definition domain. To better underline these concepts some classical numerical integration schemes are reported, such as the trapezoidal rule or the Simpson method. An alternative approach based on Taylor series is also illustrated to approximate integrals. This technique is named as Generalized Taylor-based Integral Quadrature (GTIQ) method. The major structural theories for the analysis of the mechanical behavior of various structures are presented in depth in the book. In particular, the strong and weak formulations of the corresponding governing equations are discussed and illustrated. Generally speaking, two formulations of the same system of governing equations can be developed, which are respectively the strong and weak (or variational) formulations. Once the governing equations that rule a generic structural problem are obtained, together with the corresponding boundary conditions, a differential system is written. In particular, the Strong Formulation (SF) of the governing equations is obtained. The differentiability requirement, instead, is reduced through a weighted integral statement if the corresponding Weak Formulation (WF) of the governing equations is developed. Thus, an equivalent integral formulation is derived, starting directly from the previous one. In particular, the formulation in hand is obtained by introducing a Lagrangian approximation of the degrees of freedom of the problem. The need of studying arbitrarily shaped domains or characterized by mechanical and geometrical discontinuities leads to the development of new numerical approaches that divide the structure in finite elements. Then, the strong form or the weak form of the fundamental equations are solved inside each element. The fundamental aspects of this technique, which the author defined respectively Strong Formulation Finite Element Method (SFEM) and Weak Formulation Finite Element Method (WFEM), are presented in the book.
NASA Contractor Report
Author: United States. National Aeronautics and Space Administration
Publisher:
ISBN:
Category : Astronautics
Languages : en
Pages : 654
Book Description
Publisher:
ISBN:
Category : Astronautics
Languages : en
Pages : 654
Book Description