Static And Dynamic Problems Of Nanobeams And Nanoplates

Static And Dynamic Problems Of Nanobeams And Nanoplates PDF Author: Snehashish Chakraverty
Publisher: World Scientific
ISBN: 9813143932
Category : Technology & Engineering
Languages : en
Pages : 212

Get Book Here

Book Description
This book will deal with different sections associated with bending, buckling and vibration of nanobeams and nanoplates along with systematic description of handling the complexities when nanoscales are considered. The introduction includes basic ideas concerned with nanostructures, the algorithms and iterations followed in numerical methods and introduction to beam and plate theories in conjunction with nonlocal elasticity theory applied in nanostructures.Next, the investigation of nanobeams and nanoplates subjected to different sets of boundary conditions based on various nonlocal theories will be included. The varieties of physical and geometrical parameters that influence the bending, buckling and vibration mechanisms will be summarized.Finally, effect of environments such as thermal environment, Winkler-Pasternak elastic foundations and non-uniformity etc. on the buckling and vibration mechanisms will be illustrated.

Static And Dynamic Problems Of Nanobeams And Nanoplates

Static And Dynamic Problems Of Nanobeams And Nanoplates PDF Author: Snehashish Chakraverty
Publisher: World Scientific
ISBN: 9813143932
Category : Technology & Engineering
Languages : en
Pages : 212

Get Book Here

Book Description
This book will deal with different sections associated with bending, buckling and vibration of nanobeams and nanoplates along with systematic description of handling the complexities when nanoscales are considered. The introduction includes basic ideas concerned with nanostructures, the algorithms and iterations followed in numerical methods and introduction to beam and plate theories in conjunction with nonlocal elasticity theory applied in nanostructures.Next, the investigation of nanobeams and nanoplates subjected to different sets of boundary conditions based on various nonlocal theories will be included. The varieties of physical and geometrical parameters that influence the bending, buckling and vibration mechanisms will be summarized.Finally, effect of environments such as thermal environment, Winkler-Pasternak elastic foundations and non-uniformity etc. on the buckling and vibration mechanisms will be illustrated.

Static and Dynamic Problems of Nanobeams and Nanoplates

Static and Dynamic Problems of Nanobeams and Nanoplates PDF Author: Snehashish Chakraverty
Publisher:
ISBN: 9789813143920
Category : Elastic analysis (Engineering)
Languages : en
Pages :

Get Book Here

Book Description


Structural Dynamics in Uncertain Environments

Structural Dynamics in Uncertain Environments PDF Author: Subrat Kumar Jena
Publisher: CRC Press
ISBN: 1040154727
Category : Technology & Engineering
Languages : en
Pages : 162

Get Book Here

Book Description
The uncertainties or randomness of the material properties of structural components are of serious concern to engineers. Structural analysis is usually done by taking into account only deterministic or crisp parameters; however, building materials can have the aspects of uncertainty. The causes of this uncertainty or randomness are defects in atomic configurations, measurement errors, environmental conditions, and other factors. The influence of uncertainties is more profound for nanoscale and microstructures due to their small-scale effects. Several nanoscale experiments and molecular dynamics studies also support the claim of possible attachment of randomness for various parameters. With regard to these concerns, it is necessary to propose new models that specifically integrate and effectively overcome imprecisely defined parameters of the system. Structural Dynamics in Uncertain Environments presents the uncertainty modeling of nanobeams, microbeams, and Funtionally Graded (FG) beams using non-probabilistic approaches which include interval and fuzzy concepts. Vibration and stability analyses of the beams are conducted using different analytical, semi-analytical, and numerical methods for finding exact and/or approximate solutions of governing equations arising in uncertain environments. In this context, this book addresses structural uncertainties and investigates the dynamic behavior of micro-, nano-, and FG beams. Examines the concepts of fuzzy uncertain environments in structural dynamics Presents comprehensive analysis of propagation of uncertainty in vibration and buckling analyses Explains efficient mathematical methods to handle uncertainties in the governing equations

Mechanics of Smart Magneto-electro-elastic Nanostructures

Mechanics of Smart Magneto-electro-elastic Nanostructures PDF Author: Farzad Ebrahimi
Publisher: Woodhead Publishing
ISBN: 0128231661
Category : Technology & Engineering
Languages : en
Pages : 456

Get Book Here

Book Description
Mechanics of Smart Magneto-electro-elastic Nanostructures provides mathematical models for buckling and vibration analysis of flexoelectric and magneto-electro-elastic nanostructures under thermal environment effects. Analytical results are presented in each chapter based on changes in different parameters, including various electric and magnetic potential, non-local parameters or different boundary conditions and their effects on vibration and buckling behavior on nanobeams and nanoplates. Key characteristics of smart materials and their response to external factors are presented, including size-dependency of nanostructures, effect of various gradient indexes, thermal environment effects, and effects of elastic foundation. - Reviews vibration and buckling models of the responses of smart magneto-electro-elastic materials - Addresses thermal environment and elastic foundation effects of magneto-electro-elastic materials - Introduces piezoelectricity, flexoelectricity and magneto-electro-elasticity

Mathematical Methods in Dynamical Systems

Mathematical Methods in Dynamical Systems PDF Author: S. Chakraverty
Publisher: CRC Press
ISBN: 1000833771
Category : Mathematics
Languages : en
Pages : 393

Get Book Here

Book Description
The art of applying mathematics to real-world dynamical problems such as structural dynamics, fluid dynamics, wave dynamics, robot dynamics, etc. can be extremely challenging. Various aspects of mathematical modelling that may include deterministic or uncertain (fuzzy, interval, or stochastic) scenarios, along with integer or fractional order, are vital to understanding these dynamical systems. Mathematical Methods in Dynamical Systems offers problem-solving techniques and includes different analytical, semi-analytical, numerical, and machine intelligence methods for finding exact and/or approximate solutions of governing equations arising in dynamical systems. It provides a singular source of computationally efficient methods to investigate these systems and includes coverage of various industrial applications in a simple yet comprehensive way.

Handbook On Timoshenko-ehrenfest Beam And Uflyand- Mindlin Plate Theories

Handbook On Timoshenko-ehrenfest Beam And Uflyand- Mindlin Plate Theories PDF Author: Isaac E Elishakoff
Publisher: World Scientific
ISBN: 9813236531
Category : Technology & Engineering
Languages : en
Pages : 798

Get Book Here

Book Description
The refined theory of beams, which takes into account both rotary inertia and shear deformation, was developed jointly by Timoshenko and Ehrenfest in the years 1911-1912. In over a century since the theory was first articulated, tens of thousands of studies have been performed utilizing this theory in various contexts. Likewise, the generalization of the Timoshenko-Ehrenfest beam theory to plates was given by Uflyand and Mindlin in the years 1948-1951.The importance of these theories stems from the fact that beams and plates are indispensable, and are often occurring elements of every civil, mechanical, ocean, and aerospace structure.Despite a long history and many papers, there is not a single book that summarizes these two celebrated theories. This book is dedicated to closing the existing gap within the literature. It also deals extensively with several controversial topics, namely those of priority, the so-called 'second spectrum' shear coefficient, and other issues, and shows vividly that the above beam and plate theories are unnecessarily overcomplicated.In the spirit of Einstein's dictum, 'Everything should be made as simple as possible but not simpler,' this book works to clarify both the Timoshenko-Ehrenfest beam and Uflyand-Mindlin plate theories, and seeks to articulate everything in the simplest possible language, including their numerous applications.This book is addressed to graduate students, practicing engineers, researchers in their early career, and active scientists who may want to have a different look at the above theories, as well as readers at all levels of their academic or scientific career who want to know the history of the subject. The Timoshenko-Ehrenfest Beam and Uflyand-Mindlin Plate Theories are the key reference works in the study of stocky beams and thick plates that should be given their due and remain important for generations to come, since classical Bernoulli-Euler beam and Kirchhoff-Love theories are applicable for slender beams and thin plates, respectively.Related Link(s)

Analysis of Shells, Plates, and Beams

Analysis of Shells, Plates, and Beams PDF Author: Holm Altenbach
Publisher: Springer Nature
ISBN: 3030474917
Category : Science
Languages : en
Pages : 504

Get Book Here

Book Description
This book commemorates the 75th birthday of Prof. George Jaiani – Georgia’s leading expert on shell theory. He is also well known outside Georgia for his individual approach to shell theory research and as an organizer of meetings, conferences and schools in the field. The collection of papers presented includes articles by scientists from various countries discussing the state of the art and new trends in the theory of shells, plates, and beams. Chapter 20 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.

Innovative Approaches in Computational Structural Engineering

Innovative Approaches in Computational Structural Engineering PDF Author: George C. Tsiatas
Publisher: Frontiers Media SA
ISBN: 2889636070
Category :
Languages : en
Pages : 266

Get Book Here

Book Description
Nowadays, numerical computation has become one of the most vigorous tools for scientists, researchers and professional engineers, following the enormous progress made during the last decades in computing technology, in terms of both computer hardware and software development. Although this has led to tremendous achievements in computer-based structural engineering, the increasing necessity of solving complex problems in engineering requires the development of new ideas and innovative methods for providing accurate numerical solutions in affordable computing times. This collection aims at providing a forum for the presentation and discussion of state-of-the-art innovative developments, concepts, methodologies and approaches in scientific computation applied to structural engineering. It involves a wide coverage of timely issues on computational structural engineering with a broad range of both research and advanced practical applications. This Research Topic encompasses, but is not restricted to, the following scientific areas: modeling in structural engineering; finite element methods; boundary element methods; static and dynamic analysis of structures; structural stability; structural mechanics; meshless methods; smart structures and systems; fire engineering; blast engineering; structural reliability; structural health monitoring and control; optimization; and composite materials, with application to engineering structures.

Wave Propagation Analysis of Smart Nanostructures

Wave Propagation Analysis of Smart Nanostructures PDF Author: Farzad Ebrahimi
Publisher: CRC Press
ISBN: 1000760545
Category : Science
Languages : en
Pages : 285

Get Book Here

Book Description
Wave Propagation Analysis of Smart Nanostructures presents a mathematical framework for the wave propagation problem of small-scale nanobeams and nanoplates manufactured from various materials, including functionally graded composites, smart piezoelectric materials, smart magneto-electro-elastic materials, smart magnetostrictive materials, and porous materials. In this book, both classical and refined higher-order shear deformation beam and plate hypotheses are employed to formulate the wave propagation problem using the well-known Hamilton’s principle. Additionally, the influences of small-scale nanobeams on the mechanical behaviors of nanostructures are covered using both nonlocal elasticity and nonlocal strain gradient elasticity theories. Impacts of various terms, such as elastic springs of elastic foundation, damping coefficient of viscoelastic substrate, different types of temperature change, applied electric voltage and magnetic potential, and intensity of an external magnetic field on the dispersion curves of nanostructures, are included in the framework of numerous examples.

Advanced Theoretical and Computational Methods for Complex Materials and Structures

Advanced Theoretical and Computational Methods for Complex Materials and Structures PDF Author: Francesco Tornabene
Publisher: MDPI
ISBN: 3036511180
Category : Science
Languages : en
Pages : 180

Get Book Here

Book Description
The broad use of composite materials and shell structural members with complex geometries in technologies related to various branches of engineering has gained increased attention from scientists and engineers for the development of even more refined approaches and investigation of their mechanical behavior. It is well known that composite materials are able to provide higher values of strength stiffness, and thermal properties, together with conferring reduced weight, which can affect the mechanical behavior of beams, plates, and shells, in terms of static response, vibrations, and buckling loads. At the same time, enhanced structures made of composite materials can feature internal length scales and non-local behaviors, with great sensitivity to different staking sequences, ply orientations, agglomeration of nanoparticles, volume fractions of constituents, and porosity levels, among others. In addition to fiber-reinforced composites and laminates, increased attention has been paid in literature to the study of innovative components such as functionally graded materials (FGMs), carbon nanotubes (CNTs), graphene nanoplatelets, and smart constituents. Some examples of smart applications involve large stroke smart actuators, piezoelectric sensors, shape memory alloys, magnetostrictive and electrostrictive materials, as well as auxetic components and angle-tow laminates. These constituents can be included in the lamination schemes of smart structures to control and monitor the vibrational behavior or the static deflection of several composites. The development of advanced theoretical and computational models for composite materials and structures is a subject of active research and this is explored here for different complex systems, including their static, dynamic, and buckling responses; fracture mechanics at different scales; the adhesion, cohesion, and delamination of materials and interfaces.