Spatial and Material Forces in Nonlinear Continuum Mechanics

Spatial and Material Forces in Nonlinear Continuum Mechanics PDF Author: Paul Steinmann
Publisher: Springer Nature
ISBN: 3030890708
Category : Science
Languages : en
Pages : 418

Get Book Here

Book Description
This monograph details spatial and material vistas on non-linear continuum mechanics in a dissipation-consistent approach. Thereby, the spatial vista renders the common approach to nonlinear continuum mechanics and corresponding spatial forces, whereas the material vista elaborates on configurational mechanics and corresponding material or rather configurational forces. Fundamental to configurational mechanics is the concept of force. In analytical mechanics, force is a derived object that is power conjugate to changes of generalised coordinates. For a continuum body, these are typically the spatial positions of its continuum points. However, if in agreement with the second law, continuum points, e.g. on the boundary, may also change their material positions. Configurational forces are then power conjugate to these configurational changes. A paradigm is a crack tip, i.e. a singular part of the boundary changing its position during crack propagation, with the related configurational force, typically the J-integral, driving its evolution, thereby consuming power, typically expressed as the energy release rate. Taken together, configurational mechanics is an unconventional branch of continuum physics rationalising and unifying the tendency of a continuum body to change its material configuration. It is thus the ideal formulation to tackle sophisticated problems in continuum defect mechanics. Configurational mechanics is entirely free of restrictions regarding geometrical and constitutive nonlinearities and offers an accompanying versatile computational approach to continuum defect mechanics. In this monograph, I present a detailed summary account of my approach towards configurational mechanics, thereby fostering my view that configurational forces are indeed dissipation-consistent to configurational changes.

Spatial and Material Forces in Nonlinear Continuum Mechanics

Spatial and Material Forces in Nonlinear Continuum Mechanics PDF Author: Paul Steinmann
Publisher: Springer Nature
ISBN: 3030890708
Category : Science
Languages : en
Pages : 418

Get Book Here

Book Description
This monograph details spatial and material vistas on non-linear continuum mechanics in a dissipation-consistent approach. Thereby, the spatial vista renders the common approach to nonlinear continuum mechanics and corresponding spatial forces, whereas the material vista elaborates on configurational mechanics and corresponding material or rather configurational forces. Fundamental to configurational mechanics is the concept of force. In analytical mechanics, force is a derived object that is power conjugate to changes of generalised coordinates. For a continuum body, these are typically the spatial positions of its continuum points. However, if in agreement with the second law, continuum points, e.g. on the boundary, may also change their material positions. Configurational forces are then power conjugate to these configurational changes. A paradigm is a crack tip, i.e. a singular part of the boundary changing its position during crack propagation, with the related configurational force, typically the J-integral, driving its evolution, thereby consuming power, typically expressed as the energy release rate. Taken together, configurational mechanics is an unconventional branch of continuum physics rationalising and unifying the tendency of a continuum body to change its material configuration. It is thus the ideal formulation to tackle sophisticated problems in continuum defect mechanics. Configurational mechanics is entirely free of restrictions regarding geometrical and constitutive nonlinearities and offers an accompanying versatile computational approach to continuum defect mechanics. In this monograph, I present a detailed summary account of my approach towards configurational mechanics, thereby fostering my view that configurational forces are indeed dissipation-consistent to configurational changes.

Spatial and Material Forces in Nonlinear Continuum Mechanics

Spatial and Material Forces in Nonlinear Continuum Mechanics PDF Author: Paul Steinmann
Publisher:
ISBN: 9783030890711
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
This monograph details spatial and material vistas on non-linear continuum mechanics in a dissipation-consistent approach. Thereby, the spatial vista renders the common approach to nonlinear continuum mechanics and corresponding spatial forces, whereas the material vista elaborates on configurational mechanics and corresponding material or rather configurational forces. Fundamental to configurational mechanics is the concept of force. In analytical mechanics, force is a derived object that is power conjugate to changes of generalised coordinates. For a continuum body, these are typically the spatial positions of its continuum points. However, if in agreement with the second law, continuum points, e.g. on the boundary, may also change their material positions. Configurational forces are then power conjugate to these configurational changes. A paradigm is a crack tip, i.e. a singular part of the boundary changing its position during crack propagation, with the related configurational force, typically the J-integral, driving its evolution, thereby consuming power, typically expressed as the energy release rate. Taken together, configurational mechanics is an unconventional branch of continuum physics rationalising and unifying the tendency of a continuum body to change its material configuration. It is thus the ideal formulation to tackle sophisticated problems in continuum defect mechanics. Configurational mechanics is entirely free of restrictions regarding geometrical and constitutive nonlinearities and offers an accompanying versatile computational approach to continuum defect mechanics. In this monograph, I present a detailed summary account of my approach towards configurational mechanics, thereby fostering my view that configurational forces are indeed dissipation-consistent to configurational changes.

Nonlinear Continuum Mechanics

Nonlinear Continuum Mechanics PDF Author: Carlos Agelet de Saracibar
Publisher: Springer Nature
ISBN: 3031152077
Category : Technology & Engineering
Languages : en
Pages : 356

Get Book Here

Book Description
This textbook on Continuum Mechanics presents 9 chapters. Chapters 1 and 2 are devoted to Tensor Algebra and Tensor Analysis. Part I of the book includes the next 3 chapters. All the content here is valid for both solid and fluid materials. At the end of Part I, the reader should be able to set up in local spatial/material form, the fundamental governing equations and inequalities for a Continuum Mechanics problem. Part II of the book, Chapters 6 to 10, is devoted to presenting some nonlinear constitutive models for Nonlinear Solid Mechanics, including Finite Deformation Hyperelasticity, Finite Deformation Plasticity, Finite Deformation Coupled Thermoplasticity, and Finite Deformation Contact Mechanics. The constitutive equations are derived within a thermodynamically consistent framework. Finite deformation elastoplasticity models are based on a multiplicative decomposition of the deformation gradient and the notion of an intermediate configuration. Different formulations based on the intermediate configuration, the current or spatial configuration, and the material configuration are considered. The last chapter is devoted to Variational Methods in Solid Mechanics, a fundamental topic in Computational Mechanics. The book may be used as a textbook for an advanced Master’s course on Nonlinear Continuum Mechanics for graduate students in Civil, Mechanical or Aerospace Engineering, Applied Mathematics, or Applied Physics, with an interest in Continuum Mechanics and Computational Mechanics.

Nonlinear Continuum Mechanics and Large Inelastic Deformations

Nonlinear Continuum Mechanics and Large Inelastic Deformations PDF Author: Yuriy I. Dimitrienko
Publisher: Springer Science & Business Media
ISBN: 9400700342
Category : Science
Languages : en
Pages : 742

Get Book Here

Book Description
The book provides a rigorous axiomatic approach to continuum mechanics under large deformation. In addition to the classical nonlinear continuum mechanics – kinematics, fundamental laws, the theory of functions having jump discontinuities across singular surfaces, etc. - the book presents the theory of co-rotational derivatives, dynamic deformation compatibility equations, and the principles of material indifference and symmetry, all in systematized form. The focus of the book is a new approach to the formulation of the constitutive equations for elastic and inelastic continua under large deformation. This new approach is based on using energetic and quasi-energetic couples of stress and deformation tensors. This approach leads to a unified treatment of large, anisotropic elastic, viscoelastic, and plastic deformations. The author analyses classical problems, including some involving nonlinear wave propagation, using different models for continua under large deformation, and shows how different models lead to different results. The analysis is accompanied by experimental data and detailed numerical results for rubber, the ground, alloys, etc. The book will be an invaluable text for graduate students and researchers in solid mechanics, mechanical engineering, applied mathematics, physics and crystallography, as also for scientists developing advanced materials.

New Achievements in Mechanics

New Achievements in Mechanics PDF Author: Wolfgang H. Müller
Publisher: Springer Nature
ISBN: 3031561325
Category :
Languages : en
Pages : 457

Get Book Here

Book Description


Nonlinear Continuum Mechanics of Solids

Nonlinear Continuum Mechanics of Solids PDF Author: Yavuz Basar
Publisher: Springer Science & Business Media
ISBN: 3662042991
Category : Science
Languages : en
Pages : 201

Get Book Here

Book Description
The aim of the book is the presentation of the fundamental mathematical and physical concepts of continuum mechanics of solids in a unified description so as to bring young researchers rapidly close to their research area. Accordingly, emphasis is given to concepts of permanent interest, and details of minor importance are omitted. The formulation is achieved systematically in absolute tensor notation, which is almost exclusively used in modern literature. This mathematical tool is presented such that study of the book is possible without permanent reference to other works.

Configurational Forces as Basic Concepts of Continuum Physics

Configurational Forces as Basic Concepts of Continuum Physics PDF Author: Morton E. Gurtin
Publisher: Springer Science & Business Media
ISBN: 0387226567
Category : Science
Languages : en
Pages : 248

Get Book Here

Book Description
Included is a presentation of configurational forces within a classical context and a discussion of their use in areas as diverse as phase transitions and fracture.

Continuum Mechanics - Volume I

Continuum Mechanics - Volume I PDF Author: José Merodio
Publisher: EOLSS Publications
ISBN: 1848263724
Category :
Languages : en
Pages : 460

Get Book Here

Book Description
The main objective of continuum mechanics is to predict the response of a body that is under the action of external and/or internal influences, i.e. to capture and describe different mechanisms associated with the motion of a body that is under the action of loading. A body in continuum mechanics is considered to be matter continuously distributed in space. Hence, no attention is given to the microscopic (atomic) structure of real materials although non-classical generalized theories of continuum mechanics are able to deal with the mesoscopic structure of matter (i.e. defects, cracks, dispersive lengths, ...). Matter occupies space in time and the response of a body in continuum mechanics is restricted to the Newtonian space-time of classical mechanics in this volume. Einstein’s theory of relativity is not considered. In the classical sense, loading is considered as any action that changes the motion of the body. This includes, for instance, a change in temperature or a force applied. By introducing the concept of configurational forces a load may also be considered as a force that drives a change in the material space, for example the opening of a crack. Continuum mechanics refers to field descriptions of phenomena that are usually modeled by partial differential equations and, from a mathematical point of view, require non-standard knowledge of non-simple technicalities. One purpose in this volume has been to present the different subjects in a self-contained way for a general audience. The organization of the volume is as follows. Mathematically, to predict the response of a body it is necessary to formulate boundary value problems governed by balance laws. The theme of the volume, that is an overview of the subject, has been written with this idea in mind for beginners in the topic. Chapter 1 is an introduction to continuum mechanics based on a one-dimensional framework in which, simultaneously, a more detailed organization of the chapters of this volume is given. A one-dimensional approach to continuum mechanics in some aspects maybe misleading since the analysis is oversimplified. Nevertheless, it allows us to introduce the subject through the early basic steps of the continuum analysis for a general audience. Chapters 3, 4 and 5 are devoted to the mathematical setting of continuum analysis: kinematics, balance laws and thermodynamics, respectively. Chapters 6 and 7 are devoted to constitutive equations. Chapters 8 and 9 deal with different issues in the context of linear elastostatics and linear elastodynamics and waves, respectively, for solids. Linear Elasticity is a classical and central theory of continuum mechanics. Chapter 10 deals with fluids while chapter 11 analyzes the coupled theory of thermoelasticity. Chapter 12 deals with nonlinear elasticity and its role in the continuum framework. Chapters 13 and 14 are dedicated to different applications of solid and fluid mechanics, respectively. The rest of the chapters involve some advanced topics. Chapter 15 is dedicated to turbulence, one of the main challenges in fluid mechanics. Chapter 16 deals with electro-magneto active materials (a coupled theory). Chapter 17 deals with specific ideas of soft matter and chapter 18 deals with configurational forces. In chapter 19, constitutive equations are introduced in a general (implicit) form. Well-posedness (existence, time of existence, uniqueness, continuity) of the equations of the mechanics of continua is an important topic which involves sophisticated mathematical machinery. Chapter 20 presents different analyses related to these topics. Continuum Mechanics is an interdisciplinary subject that attracts the attention of engineers, mathematicians, physicists, etc., working in many different disciplines from a purely scientific environment to industrial applications including biology, materials science, engineering, and many other subjects.

Configurational Forces

Configurational Forces PDF Author: Gerard A. Maugin
Publisher: CRC Press
ISBN: 9781439846131
Category : Mathematics
Languages : en
Pages : 562

Get Book Here

Book Description
Exploring recent developments in continuum mechanics, Configurational Forces: Thermomechanics, Physics, Mathematics, and Numerics presents the general framework for configurational forces. It also covers a range of applications in engineering and condensed matter physics. The author presents the fundamentals of accepted standard continuum mechanics, before introducing Eshelby material stress, field theory, variational formulations, Noether’s theorem, and the resulting conservation laws. In the chapter on complex continua, he compares the classical perspective of B.D. Coleman and W. Noll with the viewpoint linked to abstract field theory. He then describes the important notion of local structural rearrangement and its relationship to Eshelby stress. After looking at the relevance of Eshelby stress in the thermodynamic description of singular interfaces, the text focuses on fracture problems, microstructured media, systems with mass exchanges, and electromagnetic deformable media. The concluding chapters discuss the exploitation of the canonical conservation law of momentum in nonlinear wave propagation, the application of canonical-momentum conservation law and material force in numerical schemes, and similarities of fluid mechanics and aerodynamics. Written by a long-time researcher in mechanical engineering, this book provides a detailed treatment of the theory of configurational forces—one of the latest and most fruitful advances in macroscopic field theories. Through many applications, it shows the depth and efficiency of this theory.

Nonlinear Continuum Mechanics for Finite Element Analysis

Nonlinear Continuum Mechanics for Finite Element Analysis PDF Author: Javier Bonet
Publisher: Cambridge University Press
ISBN: 9780521572729
Category : Mathematics
Languages : en
Pages : 272

Get Book Here

Book Description
A unified treatment of nonlinear continuum analysis and finite element techniques.