Author: James M. Hill
Publisher:
ISBN:
Category : Differential equations
Languages : en
Pages : 180
Book Description
Solution of Differential Equations by Means of One-parameter Groups
Author: James M. Hill
Publisher:
ISBN:
Category : Differential equations
Languages : en
Pages : 180
Book Description
Publisher:
ISBN:
Category : Differential equations
Languages : en
Pages : 180
Book Description
Differential Equations and Group Methods for Scientists and Engineers
Author: James M. Hill
Publisher: CRC Press
ISBN: 9780849344428
Category : Mathematics
Languages : en
Pages : 232
Book Description
Differential Equations and Group Methods for Scientists and Engineers presents a basic introduction to the technically complex area of invariant one-parameter Lie group methods and their use in solving differential equations. The book features discussions on ordinary differential equations (first, second, and higher order) in addition to partial differential equations (linear and nonlinear). Each chapter contains worked examples with several problems at the end; answers to these problems and hints on how to solve them are found at the back of the book. Students and professionals in mathematics, science, and engineering will find this book indispensable for developing a fundamental understanding of how to use invariant one-parameter group methods to solve differential equations.
Publisher: CRC Press
ISBN: 9780849344428
Category : Mathematics
Languages : en
Pages : 232
Book Description
Differential Equations and Group Methods for Scientists and Engineers presents a basic introduction to the technically complex area of invariant one-parameter Lie group methods and their use in solving differential equations. The book features discussions on ordinary differential equations (first, second, and higher order) in addition to partial differential equations (linear and nonlinear). Each chapter contains worked examples with several problems at the end; answers to these problems and hints on how to solve them are found at the back of the book. Students and professionals in mathematics, science, and engineering will find this book indispensable for developing a fundamental understanding of how to use invariant one-parameter group methods to solve differential equations.
Solution of Differential Equations by Means of One-parameter Groups
Author: James M. Hill
Publisher: Pitman Advanced Publishing Program
ISBN: 9780273085065
Category : Differential equations
Languages : en
Pages : 0
Book Description
Publisher: Pitman Advanced Publishing Program
ISBN: 9780273085065
Category : Differential equations
Languages : en
Pages : 0
Book Description
An Introduction to the Lie Theory of One-parameter Groups
Author: Abraham Cohen
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 262
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 262
Book Description
Applications of Lie Groups to Differential Equations
Author: Peter J. Olver
Publisher: Springer Science & Business Media
ISBN: 1468402749
Category : Mathematics
Languages : en
Pages : 524
Book Description
This book is devoted to explaining a wide range of applications of con tinuous symmetry groups to physically important systems of differential equations. Emphasis is placed on significant applications of group-theoretic methods, organized so that the applied reader can readily learn the basic computational techniques required for genuine physical problems. The first chapter collects together (but does not prove) those aspects of Lie group theory which are of importance to differential equations. Applications covered in the body of the book include calculation of symmetry groups of differential equations, integration of ordinary differential equations, including special techniques for Euler-Lagrange equations or Hamiltonian systems, differential invariants and construction of equations with pre scribed symmetry groups, group-invariant solutions of partial differential equations, dimensional analysis, and the connections between conservation laws and symmetry groups. Generalizations of the basic symmetry group concept, and applications to conservation laws, integrability conditions, completely integrable systems and soliton equations, and bi-Hamiltonian systems are covered in detail. The exposition is reasonably self-contained, and supplemented by numerous examples of direct physical importance, chosen from classical mechanics, fluid mechanics, elasticity and other applied areas.
Publisher: Springer Science & Business Media
ISBN: 1468402749
Category : Mathematics
Languages : en
Pages : 524
Book Description
This book is devoted to explaining a wide range of applications of con tinuous symmetry groups to physically important systems of differential equations. Emphasis is placed on significant applications of group-theoretic methods, organized so that the applied reader can readily learn the basic computational techniques required for genuine physical problems. The first chapter collects together (but does not prove) those aspects of Lie group theory which are of importance to differential equations. Applications covered in the body of the book include calculation of symmetry groups of differential equations, integration of ordinary differential equations, including special techniques for Euler-Lagrange equations or Hamiltonian systems, differential invariants and construction of equations with pre scribed symmetry groups, group-invariant solutions of partial differential equations, dimensional analysis, and the connections between conservation laws and symmetry groups. Generalizations of the basic symmetry group concept, and applications to conservation laws, integrability conditions, completely integrable systems and soliton equations, and bi-Hamiltonian systems are covered in detail. The exposition is reasonably self-contained, and supplemented by numerous examples of direct physical importance, chosen from classical mechanics, fluid mechanics, elasticity and other applied areas.
Lie Group Analysis of Differential Equations
Author: Ranis Ibragimov
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3111387496
Category : Mathematics
Languages : en
Pages : 298
Book Description
The book is focused on physical interpretation and visualization of the obtained invariant solutions for nonlinear mathematical modeling of atmospheric and ocean waves. This volume represents a unique blend of analytical and numerical methods complemented by the author's developments in ocean and atmospheric sciences and it is meant for researchers and graduate students interested in applied mathematics and mathematical modeling.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3111387496
Category : Mathematics
Languages : en
Pages : 298
Book Description
The book is focused on physical interpretation and visualization of the obtained invariant solutions for nonlinear mathematical modeling of atmospheric and ocean waves. This volume represents a unique blend of analytical and numerical methods complemented by the author's developments in ocean and atmospheric sciences and it is meant for researchers and graduate students interested in applied mathematics and mathematical modeling.
CRC Handbook of Lie Group Analysis of Differential Equations, Volume I
Author: Nail H. Ibragimov
Publisher: CRC Press
ISBN: 1000948161
Category : Science
Languages : en
Pages : 452
Book Description
Today Lie group theoretical approach to differential equations has been extended to new situations and has become applicable to the majority of equations that frequently occur in applied sciences. Newly developed theoretical and computational methods are awaiting application. Students and applied scientists are expected to understand these methods. Volume 3 and the accompanying software allow readers to extend their knowledge of computational algebra. Written by the world's leading experts in the field, this up-to-date sourcebook covers topics such as Lie-Bäcklund, conditional and non-classical symmetries, approximate symmetry groups for equations with a small parameter, group analysis of differential equations with distributions, integro-differential equations, recursions, and symbolic software packages. The text provides an ideal introduction to the modern group analysis and addresses issues to both beginners and experienced researchers in the application of Lie group methods.
Publisher: CRC Press
ISBN: 1000948161
Category : Science
Languages : en
Pages : 452
Book Description
Today Lie group theoretical approach to differential equations has been extended to new situations and has become applicable to the majority of equations that frequently occur in applied sciences. Newly developed theoretical and computational methods are awaiting application. Students and applied scientists are expected to understand these methods. Volume 3 and the accompanying software allow readers to extend their knowledge of computational algebra. Written by the world's leading experts in the field, this up-to-date sourcebook covers topics such as Lie-Bäcklund, conditional and non-classical symmetries, approximate symmetry groups for equations with a small parameter, group analysis of differential equations with distributions, integro-differential equations, recursions, and symbolic software packages. The text provides an ideal introduction to the modern group analysis and addresses issues to both beginners and experienced researchers in the application of Lie group methods.
Transformation Groups for Beginners
Author: Sergeĭ Vasilʹevich Duzhin
Publisher: American Mathematical Soc.
ISBN: 0821836439
Category : Mathematics
Languages : en
Pages : 258
Book Description
Presents a discussion of algebraic operations on the points in the plane and rigid motions in the Euclidean plane. This work introduces the notions of a transformation group and of an abstract group. It gives an elementary exposition of the basic ideas of Sophus Lie about symmetries of differential equations.
Publisher: American Mathematical Soc.
ISBN: 0821836439
Category : Mathematics
Languages : en
Pages : 258
Book Description
Presents a discussion of algebraic operations on the points in the plane and rigid motions in the Euclidean plane. This work introduces the notions of a transformation group and of an abstract group. It gives an elementary exposition of the basic ideas of Sophus Lie about symmetries of differential equations.
Handbook of Differential Equations
Author: Daniel Zwillinger
Publisher: CRC Press
ISBN: 100046816X
Category : Mathematics
Languages : en
Pages : 737
Book Description
Through the previous three editions, Handbook of Differential Equations has proven an invaluable reference for anyone working within the field of mathematics, including academics, students, scientists, and professional engineers. The book is a compilation of methods for solving and approximating differential equations. These include the most widely applicable methods for solving and approximating differential equations, as well as numerous methods. Topics include methods for ordinary differential equations, partial differential equations, stochastic differential equations, and systems of such equations. Included for nearly every method are: The types of equations to which the method is applicable The idea behind the method The procedure for carrying out the method At least one simple example of the method Any cautions that should be exercised Notes for more advanced users The fourth edition includes corrections, many supplied by readers, as well as many new methods and techniques. These new and corrected entries make necessary improvements in this edition.
Publisher: CRC Press
ISBN: 100046816X
Category : Mathematics
Languages : en
Pages : 737
Book Description
Through the previous three editions, Handbook of Differential Equations has proven an invaluable reference for anyone working within the field of mathematics, including academics, students, scientists, and professional engineers. The book is a compilation of methods for solving and approximating differential equations. These include the most widely applicable methods for solving and approximating differential equations, as well as numerous methods. Topics include methods for ordinary differential equations, partial differential equations, stochastic differential equations, and systems of such equations. Included for nearly every method are: The types of equations to which the method is applicable The idea behind the method The procedure for carrying out the method At least one simple example of the method Any cautions that should be exercised Notes for more advanced users The fourth edition includes corrections, many supplied by readers, as well as many new methods and techniques. These new and corrected entries make necessary improvements in this edition.
Symmetry and Integration Methods for Differential Equations
Author: George Bluman
Publisher: Springer Science & Business Media
ISBN: 0387216499
Category : Mathematics
Languages : en
Pages : 425
Book Description
This text discusses Lie groups of transformations and basic symmetry methods for solving ordinary and partial differential equations. It places emphasis on explicit computational algorithms to discover symmetries admitted by differential equations and to construct solutions resulting from symmetries. This new edition covers contact transformations, Lie-B cklund transformations, and adjoints and integrating factors for ODEs of arbitrary order.
Publisher: Springer Science & Business Media
ISBN: 0387216499
Category : Mathematics
Languages : en
Pages : 425
Book Description
This text discusses Lie groups of transformations and basic symmetry methods for solving ordinary and partial differential equations. It places emphasis on explicit computational algorithms to discover symmetries admitted by differential equations and to construct solutions resulting from symmetries. This new edition covers contact transformations, Lie-B cklund transformations, and adjoints and integrating factors for ODEs of arbitrary order.