Author: Santi Novani
Publisher: Springer Nature
ISBN: 9819752191
Category :
Languages : en
Pages : 180
Book Description
Social Decision Systems Science
Author: Santi Novani
Publisher: Springer Nature
ISBN: 9819752191
Category :
Languages : en
Pages : 180
Book Description
Publisher: Springer Nature
ISBN: 9819752191
Category :
Languages : en
Pages : 180
Book Description
Bridging the Socio-technical Gap in Decision Support Systems
Author: Ana Respício
Publisher: IOS Press
ISBN: 1607505762
Category : Computers
Languages : en
Pages : 616
Book Description
Presents the advances in decision support theory and practice with a focus on bridging the socio-technical gap. This book covers a wide range of topics including: Understanding DM, Design of DSS, Web 2.0 Systems in Decision Support, Business Intelligence and Data Warehousing, Applications of Multi-Criteria Decision Analysis, and more.
Publisher: IOS Press
ISBN: 1607505762
Category : Computers
Languages : en
Pages : 616
Book Description
Presents the advances in decision support theory and practice with a focus on bridging the socio-technical gap. This book covers a wide range of topics including: Understanding DM, Design of DSS, Web 2.0 Systems in Decision Support, Business Intelligence and Data Warehousing, Applications of Multi-Criteria Decision Analysis, and more.
Systems Science and Cybernetics - Volume I
Author: Francisco Parra-Luna
Publisher: EOLSS Publications
ISBN: 1848262027
Category :
Languages : en
Pages : 406
Book Description
The subject “Systems sciences and cybernetics” is the outcome of the convergence of a number of trends in a larger current of thought devoted to the growing complexity of (primarily social) objects and arising in response to the need for globalized treatment of such objects. This has been magnified by the proliferation and publication of all manner of quantitative scientific data on such objects, advances in the theories on their inter-relations, the enormous computational capacity provided by IT hardware and software and the critical revisiting of subject-object interaction, not to mention the urgent need to control the efficiency of complex systems, where “efficiency” is understood to mean the ability to find a solution to many social problems, including those posed on a planetary scale. The result has been the forging of a new, academically consolidated scientific trend going by the name of Systems Theory and Cybernetics, with a comprehensive, multi-disciplinary focus and therefore apt for understanding realities still regarded to be inescapably chaotic. This subject entry is subdivided into four sections. The first, an introduction to systemic theories, addresses the historic development of the most commonly used systemic approaches, from new concepts such as the so-called “geometry of thinking” or the systemic treatment of “non-systemic identities” to the taxonomic, entropic, axiological and ethical problems deriving from a general “systemic-cybernetic” conceit. Hence, the focus in this section is on the historic and philosophical aspects of the subject. Moreover, it may be asserted today that, beyond a shadow of a doubt, problems, in particular problems deriving from human interaction but in general any problem regardless of its nature, must be posed from a systemic perspective, for otherwise the obstacles to their solution are insurmountable. Reaching such a perspective requires taking at least the following well-known steps: a) statement of the problem from the determinant variables or phenomena; b) adoption of theoretical models showing the interrelationships among such variables; c) use of the maximum amount of – wherever possible quantitative – information available on each; d) placement of the set of variables in an environment that inevitably pre-determines the problem. That epistemology would explain the substantial development of the systemic-cybernetic approach in recent decades. The articles in the second section deal in particular with the different methodological approaches developed when confronting real problems, from issues that affect humanity as a whole to minor but specific questions arising in human organizations. Certain sub-themes are discussed by the various authors – always from a didactic vantage –, including: problem discovery and diagnosis and development of the respective critical theory; the design of ad hoc strategies and methodologies; the implementation of both qualitative (soft system methodologies) and formal and quantitative (such as the “General System Problem Solver” or the “axiological-operational” perspective) approaches; cross-disciplinary integration; and suitable methods for broaching psychological, cultural and socio-political dynamisms. The third section is devoted to cybernetics in the present dual meaning of the term: on the one hand, control of the effectiveness of communication and actions, and on the other, the processes of self-production of knowledge through reflection and the relationship between the observing subject and the observed object when the latter is also observer and the former observed. Known as “second order cybernetics”, this provides an avenue for rethinking the validity of knowledge, such as for instance when viewed through what is known as “bipolar feedback”: processes through which interactions create novelty, complexity and diversity. Finally, the fourth section centres around artificial and computational intelligence, addressing sub-themes such as “neural networks”, the “simulated annealing” that ranges from statistical thermodynamics to combinatory problem-solving, such as in the explanation of the role of adaptive systems, or when discussing the relationship between biological and computational intelligence.
Publisher: EOLSS Publications
ISBN: 1848262027
Category :
Languages : en
Pages : 406
Book Description
The subject “Systems sciences and cybernetics” is the outcome of the convergence of a number of trends in a larger current of thought devoted to the growing complexity of (primarily social) objects and arising in response to the need for globalized treatment of such objects. This has been magnified by the proliferation and publication of all manner of quantitative scientific data on such objects, advances in the theories on their inter-relations, the enormous computational capacity provided by IT hardware and software and the critical revisiting of subject-object interaction, not to mention the urgent need to control the efficiency of complex systems, where “efficiency” is understood to mean the ability to find a solution to many social problems, including those posed on a planetary scale. The result has been the forging of a new, academically consolidated scientific trend going by the name of Systems Theory and Cybernetics, with a comprehensive, multi-disciplinary focus and therefore apt for understanding realities still regarded to be inescapably chaotic. This subject entry is subdivided into four sections. The first, an introduction to systemic theories, addresses the historic development of the most commonly used systemic approaches, from new concepts such as the so-called “geometry of thinking” or the systemic treatment of “non-systemic identities” to the taxonomic, entropic, axiological and ethical problems deriving from a general “systemic-cybernetic” conceit. Hence, the focus in this section is on the historic and philosophical aspects of the subject. Moreover, it may be asserted today that, beyond a shadow of a doubt, problems, in particular problems deriving from human interaction but in general any problem regardless of its nature, must be posed from a systemic perspective, for otherwise the obstacles to their solution are insurmountable. Reaching such a perspective requires taking at least the following well-known steps: a) statement of the problem from the determinant variables or phenomena; b) adoption of theoretical models showing the interrelationships among such variables; c) use of the maximum amount of – wherever possible quantitative – information available on each; d) placement of the set of variables in an environment that inevitably pre-determines the problem. That epistemology would explain the substantial development of the systemic-cybernetic approach in recent decades. The articles in the second section deal in particular with the different methodological approaches developed when confronting real problems, from issues that affect humanity as a whole to minor but specific questions arising in human organizations. Certain sub-themes are discussed by the various authors – always from a didactic vantage –, including: problem discovery and diagnosis and development of the respective critical theory; the design of ad hoc strategies and methodologies; the implementation of both qualitative (soft system methodologies) and formal and quantitative (such as the “General System Problem Solver” or the “axiological-operational” perspective) approaches; cross-disciplinary integration; and suitable methods for broaching psychological, cultural and socio-political dynamisms. The third section is devoted to cybernetics in the present dual meaning of the term: on the one hand, control of the effectiveness of communication and actions, and on the other, the processes of self-production of knowledge through reflection and the relationship between the observing subject and the observed object when the latter is also observer and the former observed. Known as “second order cybernetics”, this provides an avenue for rethinking the validity of knowledge, such as for instance when viewed through what is known as “bipolar feedback”: processes through which interactions create novelty, complexity and diversity. Finally, the fourth section centres around artificial and computational intelligence, addressing sub-themes such as “neural networks”, the “simulated annealing” that ranges from statistical thermodynamics to combinatory problem-solving, such as in the explanation of the role of adaptive systems, or when discussing the relationship between biological and computational intelligence.
Research Anthology on Decision Support Systems and Decision Management in Healthcare, Business, and Engineering
Author: Management Association, Information Resources
Publisher: IGI Global
ISBN: 1799890244
Category : Business & Economics
Languages : en
Pages : 1538
Book Description
Decision support systems (DSS) are widely touted for their effectiveness in aiding decision making, particularly across a wide and diverse range of industries including healthcare, business, and engineering applications. The concepts, principles, and theories of enhanced decision making are essential points of research as well as the exact methods, tools, and technologies being implemented in these industries. From both a standpoint of DSS interfaces, namely the design and development of these technologies, along with the implementations, including experiences and utilization of these tools, one can get a better sense of how exactly DSS has changed the face of decision making and management in multi-industry applications. Furthermore, the evaluation of the impact of these technologies is essential in moving forward in the future. The Research Anthology on Decision Support Systems and Decision Management in Healthcare, Business, and Engineering explores how decision support systems have been developed and implemented across diverse industries through perspectives on the technology, the utilizations of these tools, and from a decision management standpoint. The chapters will cover not only the interfaces, implementations, and functionality of these tools, but also the overall impacts they have had on the specific industries mentioned. This book also evaluates the effectiveness along with benefits and challenges of using DSS as well as the outlook for the future. This book is ideal for decision makers, IT consultants and specialists, software developers, design professionals, academicians, policymakers, researchers, professionals, and students interested in how DSS is being used in different industries.
Publisher: IGI Global
ISBN: 1799890244
Category : Business & Economics
Languages : en
Pages : 1538
Book Description
Decision support systems (DSS) are widely touted for their effectiveness in aiding decision making, particularly across a wide and diverse range of industries including healthcare, business, and engineering applications. The concepts, principles, and theories of enhanced decision making are essential points of research as well as the exact methods, tools, and technologies being implemented in these industries. From both a standpoint of DSS interfaces, namely the design and development of these technologies, along with the implementations, including experiences and utilization of these tools, one can get a better sense of how exactly DSS has changed the face of decision making and management in multi-industry applications. Furthermore, the evaluation of the impact of these technologies is essential in moving forward in the future. The Research Anthology on Decision Support Systems and Decision Management in Healthcare, Business, and Engineering explores how decision support systems have been developed and implemented across diverse industries through perspectives on the technology, the utilizations of these tools, and from a decision management standpoint. The chapters will cover not only the interfaces, implementations, and functionality of these tools, but also the overall impacts they have had on the specific industries mentioned. This book also evaluates the effectiveness along with benefits and challenges of using DSS as well as the outlook for the future. This book is ideal for decision makers, IT consultants and specialists, software developers, design professionals, academicians, policymakers, researchers, professionals, and students interested in how DSS is being used in different industries.
Principles of Systems Science
Author: George E. Mobus
Publisher: Springer
ISBN: 1493919202
Category : Science
Languages : en
Pages : 782
Book Description
This pioneering text provides a comprehensive introduction to systems structure, function, and modeling as applied in all fields of science and engineering. Systems understanding is increasingly recognized as a key to a more holistic education and greater problem solving skills, and is also reflected in the trend toward interdisciplinary approaches to research on complex phenomena. While the concepts and components of systems science will continue to be distributed throughout the various disciplines, undergraduate degree programs in systems science are also being developed, including at the authors’ own institutions. However, the subject is approached, systems science as a basis for understanding the components and drivers of phenomena at all scales should be viewed with the same importance as a traditional liberal arts education. Principles of Systems Science contains many graphs, illustrations, side bars, examples, and problems to enhance understanding. From basic principles of organization, complexity, abstract representations, and behavior (dynamics) to deeper aspects such as the relations between information, knowledge, computation, and system control, to higher order aspects such as auto-organization, emergence and evolution, the book provides an integrated perspective on the comprehensive nature of systems. It ends with practical aspects such as systems analysis, computer modeling, and systems engineering that demonstrate how the knowledge of systems can be used to solve problems in the real world. Each chapter is broken into parts beginning with qualitative descriptions that stand alone for students who have taken intermediate algebra. The second part presents quantitative descriptions that are based on pre-calculus and advanced algebra, providing a more formal treatment for students who have the necessary mathematical background. Numerous examples of systems from every realm of life, including the physical and biological sciences, humanities, social sciences, engineering, pre-med and pre-law, are based on the fundamental systems concepts of boundaries, components as subsystems, processes as flows of materials, energy, and messages, work accomplished, functions performed, hierarchical structures, and more. Understanding these basics enables further understanding both of how systems endure and how they may become increasingly complex and exhibit new properties or characteristics. Serves as a textbook for teaching systems fundamentals in any discipline or for use in an introductory course in systems science degree programs Addresses a wide range of audiences with different levels of mathematical sophistication Includes open-ended questions in special boxes intended to stimulate integrated thinking and class discussion Describes numerous examples of systems in science and society Captures the trend towards interdisciplinary research and problem solving
Publisher: Springer
ISBN: 1493919202
Category : Science
Languages : en
Pages : 782
Book Description
This pioneering text provides a comprehensive introduction to systems structure, function, and modeling as applied in all fields of science and engineering. Systems understanding is increasingly recognized as a key to a more holistic education and greater problem solving skills, and is also reflected in the trend toward interdisciplinary approaches to research on complex phenomena. While the concepts and components of systems science will continue to be distributed throughout the various disciplines, undergraduate degree programs in systems science are also being developed, including at the authors’ own institutions. However, the subject is approached, systems science as a basis for understanding the components and drivers of phenomena at all scales should be viewed with the same importance as a traditional liberal arts education. Principles of Systems Science contains many graphs, illustrations, side bars, examples, and problems to enhance understanding. From basic principles of organization, complexity, abstract representations, and behavior (dynamics) to deeper aspects such as the relations between information, knowledge, computation, and system control, to higher order aspects such as auto-organization, emergence and evolution, the book provides an integrated perspective on the comprehensive nature of systems. It ends with practical aspects such as systems analysis, computer modeling, and systems engineering that demonstrate how the knowledge of systems can be used to solve problems in the real world. Each chapter is broken into parts beginning with qualitative descriptions that stand alone for students who have taken intermediate algebra. The second part presents quantitative descriptions that are based on pre-calculus and advanced algebra, providing a more formal treatment for students who have the necessary mathematical background. Numerous examples of systems from every realm of life, including the physical and biological sciences, humanities, social sciences, engineering, pre-med and pre-law, are based on the fundamental systems concepts of boundaries, components as subsystems, processes as flows of materials, energy, and messages, work accomplished, functions performed, hierarchical structures, and more. Understanding these basics enables further understanding both of how systems endure and how they may become increasingly complex and exhibit new properties or characteristics. Serves as a textbook for teaching systems fundamentals in any discipline or for use in an introductory course in systems science degree programs Addresses a wide range of audiences with different levels of mathematical sophistication Includes open-ended questions in special boxes intended to stimulate integrated thinking and class discussion Describes numerous examples of systems in science and society Captures the trend towards interdisciplinary research and problem solving
Systems Science for Complex Policy Making
Author: Kuntoro Mangkusubroto
Publisher: Springer
ISBN: 4431552731
Category : Political Science
Languages : en
Pages : 113
Book Description
This volume applies a systems science perspective to complex policy making dynamics, using the case of Indonesia to illustrate the concepts. Indonesia is an archipelago with a high heterogeneity. Her people consist of 1,340 tribes who are scattered over 17,508 islands. Every region has different natural strengths and conditions. In the national development process all regions depend on one another other while optimizing their own conditions. In addition to this diversity, Indonesia also employs a democratic system of government with high regional autonomy. A democratic government puts a high value on individual freedom, but on the other hand, conflicts of interest also occur frequently. High regional autonomy also often causes problems in coordination among agencies and regional governments. This uniqueness creates a kind of complexity that is rarely found in other countries.These daily complexities requires intensive interaction, negotiation processes, and coordination. Such necessities should be considered in public policy making and in managing the implementation of national development programs. In this context, common theories and best practices generated on the basis of more simplified assumptions often fail. Systems science offer a way of thinking that can take into account and potentially overcome these complexities. However, efforts to apply systems science massively and continuously in real policy making by involving many stakeholders are still rarely carried out. The first part of the book discusses the gap between the existing public policy-making approach and needs in the real world. After that, the characteristics of the appropriate policy-making process in a complex environment and how this process can be carried are described. In later sections, important systems science concepts that can be applied in managing these complexities are discussed. Finally, the efforts to apply these concepts in real cases in Indonesia are described.
Publisher: Springer
ISBN: 4431552731
Category : Political Science
Languages : en
Pages : 113
Book Description
This volume applies a systems science perspective to complex policy making dynamics, using the case of Indonesia to illustrate the concepts. Indonesia is an archipelago with a high heterogeneity. Her people consist of 1,340 tribes who are scattered over 17,508 islands. Every region has different natural strengths and conditions. In the national development process all regions depend on one another other while optimizing their own conditions. In addition to this diversity, Indonesia also employs a democratic system of government with high regional autonomy. A democratic government puts a high value on individual freedom, but on the other hand, conflicts of interest also occur frequently. High regional autonomy also often causes problems in coordination among agencies and regional governments. This uniqueness creates a kind of complexity that is rarely found in other countries.These daily complexities requires intensive interaction, negotiation processes, and coordination. Such necessities should be considered in public policy making and in managing the implementation of national development programs. In this context, common theories and best practices generated on the basis of more simplified assumptions often fail. Systems science offer a way of thinking that can take into account and potentially overcome these complexities. However, efforts to apply systems science massively and continuously in real policy making by involving many stakeholders are still rarely carried out. The first part of the book discusses the gap between the existing public policy-making approach and needs in the real world. After that, the characteristics of the appropriate policy-making process in a complex environment and how this process can be carried are described. In later sections, important systems science concepts that can be applied in managing these complexities are discussed. Finally, the efforts to apply these concepts in real cases in Indonesia are described.
Systems Science and Cybernetics - Volume II
Author: Francisco Parra-Luna
Publisher: EOLSS Publications
ISBN: 1848262035
Category :
Languages : en
Pages : 502
Book Description
The subject “Systems sciences and cybernetics” is the outcome of the convergence of a number of trends in a larger current of thought devoted to the growing complexity of (primarily social) objects and arising in response to the need for globalized treatment of such objects. This has been magnified by the proliferation and publication of all manner of quantitative scientific data on such objects, advances in the theories on their inter-relations, the enormous computational capacity provided by IT hardware and software and the critical revisiting of subject-object interaction, not to mention the urgent need to control the efficiency of complex systems, where “efficiency” is understood to mean the ability to find a solution to many social problems, including those posed on a planetary scale. The result has been the forging of a new, academically consolidated scientific trend going by the name of Systems Theory and Cybernetics, with a comprehensive, multi-disciplinary focus and therefore apt for understanding realities still regarded to be inescapably chaotic. This subject entry is subdivided into four sections. The first, an introduction to systemic theories, addresses the historic development of the most commonly used systemic approaches, from new concepts such as the so-called “geometry of thinking” or the systemic treatment of “non-systemic identities” to the taxonomic, entropic, axiological and ethical problems deriving from a general “systemic-cybernetic” conceit. Hence, the focus in this section is on the historic and philosophical aspects of the subject. Moreover, it may be asserted today that, beyond a shadow of a doubt, problems, in particular problems deriving from human interaction but in general any problem regardless of its nature, must be posed from a systemic perspective, for otherwise the obstacles to their solution are insurmountable. Reaching such a perspective requires taking at least the following well-known steps: a) statement of the problem from the determinant variables or phenomena; b) adoption of theoretical models showing the interrelationships among such variables; c) use of the maximum amount of – wherever possible quantitative – information available on each; d) placement of the set of variables in an environment that inevitably pre-determines the problem. That epistemology would explain the substantial development of the systemic-cybernetic approach in recent decades. The articles in the second section deal in particular with the different methodological approaches developed when confronting real problems, from issues that affect humanity as a whole to minor but specific questions arising in human organizations. Certain sub-themes are discussed by the various authors – always from a didactic vantage –, including: problem discovery and diagnosis and development of the respective critical theory; the design of ad hoc strategies and methodologies; the implementation of both qualitative (soft system methodologies) and formal and quantitative (such as the “General System Problem Solver” or the “axiological-operational” perspective) approaches; cross-disciplinary integration; and suitable methods for broaching psychological, cultural and socio-political dynamisms. The third section is devoted to cybernetics in the present dual meaning of the term: on the one hand, control of the effectiveness of communication and actions, and on the other, the processes of self-production of knowledge through reflection and the relationship between the observing subject and the observed object when the latter is also observer and the former observed. Known as “second order cybernetics”, this provides an avenue for rethinking the validity of knowledge, such as for instance when viewed through what is known as “bipolar feedback”: processes through which interactions create novelty, complexity and diversity. Finally, the fourth section centres around artificial and computational intelligence, addressing sub-themes such as “neural networks”, the “simulated annealing” that ranges from statistical thermodynamics to combinatory problem-solving, such as in the explanation of the role of adaptive systems, or when discussing the relationship between biological and computational intelligence.
Publisher: EOLSS Publications
ISBN: 1848262035
Category :
Languages : en
Pages : 502
Book Description
The subject “Systems sciences and cybernetics” is the outcome of the convergence of a number of trends in a larger current of thought devoted to the growing complexity of (primarily social) objects and arising in response to the need for globalized treatment of such objects. This has been magnified by the proliferation and publication of all manner of quantitative scientific data on such objects, advances in the theories on their inter-relations, the enormous computational capacity provided by IT hardware and software and the critical revisiting of subject-object interaction, not to mention the urgent need to control the efficiency of complex systems, where “efficiency” is understood to mean the ability to find a solution to many social problems, including those posed on a planetary scale. The result has been the forging of a new, academically consolidated scientific trend going by the name of Systems Theory and Cybernetics, with a comprehensive, multi-disciplinary focus and therefore apt for understanding realities still regarded to be inescapably chaotic. This subject entry is subdivided into four sections. The first, an introduction to systemic theories, addresses the historic development of the most commonly used systemic approaches, from new concepts such as the so-called “geometry of thinking” or the systemic treatment of “non-systemic identities” to the taxonomic, entropic, axiological and ethical problems deriving from a general “systemic-cybernetic” conceit. Hence, the focus in this section is on the historic and philosophical aspects of the subject. Moreover, it may be asserted today that, beyond a shadow of a doubt, problems, in particular problems deriving from human interaction but in general any problem regardless of its nature, must be posed from a systemic perspective, for otherwise the obstacles to their solution are insurmountable. Reaching such a perspective requires taking at least the following well-known steps: a) statement of the problem from the determinant variables or phenomena; b) adoption of theoretical models showing the interrelationships among such variables; c) use of the maximum amount of – wherever possible quantitative – information available on each; d) placement of the set of variables in an environment that inevitably pre-determines the problem. That epistemology would explain the substantial development of the systemic-cybernetic approach in recent decades. The articles in the second section deal in particular with the different methodological approaches developed when confronting real problems, from issues that affect humanity as a whole to minor but specific questions arising in human organizations. Certain sub-themes are discussed by the various authors – always from a didactic vantage –, including: problem discovery and diagnosis and development of the respective critical theory; the design of ad hoc strategies and methodologies; the implementation of both qualitative (soft system methodologies) and formal and quantitative (such as the “General System Problem Solver” or the “axiological-operational” perspective) approaches; cross-disciplinary integration; and suitable methods for broaching psychological, cultural and socio-political dynamisms. The third section is devoted to cybernetics in the present dual meaning of the term: on the one hand, control of the effectiveness of communication and actions, and on the other, the processes of self-production of knowledge through reflection and the relationship between the observing subject and the observed object when the latter is also observer and the former observed. Known as “second order cybernetics”, this provides an avenue for rethinking the validity of knowledge, such as for instance when viewed through what is known as “bipolar feedback”: processes through which interactions create novelty, complexity and diversity. Finally, the fourth section centres around artificial and computational intelligence, addressing sub-themes such as “neural networks”, the “simulated annealing” that ranges from statistical thermodynamics to combinatory problem-solving, such as in the explanation of the role of adaptive systems, or when discussing the relationship between biological and computational intelligence.
Handbook of Systems Sciences
Author: Gary S. Metcalf
Publisher: Springer
ISBN: 9789811507199
Category : Business & Economics
Languages : en
Pages : 1443
Book Description
The primary purpose of this handbook is to clearly describe the current state of theories of systems sciences and to support their use and practice. There are many ways in which systems sciences can be described. This handbook takes a multifaceted view of systems sciences and describes them in terms of a relatively large number of dimensions, from natural and engineering science to social science and systems management perspectives. It is not the authors’ intent, however, to produce a catalog of systems science concepts, methodologies, tools, or products. Instead, the focus is on the structural network of a variety of topics. Special emphasis is given to a cyclic–interrelated view; for example, when a theory of systems sciences is described, there is also discussion of how and why the theory is relevant to modeling or practice in reality. Such an interrelationship between theory and practice is also illustrated when an applied research field in systems sciences is explained. The chapters in the handbook present definitive discussions of systems sciences from a wide array of perspectives. The needs of practitioners in industry and government as well as students aspiring to careers in systems sciences provide the motivation for the majority of the chapters. The handbook begins with a comprehensive introduction to the coverage that follows. It provides not only an introduction to systems sciences but also a brief overview and integration of the succeeding chapters in terms of a knowledge map. The introduction is intended to be used as a field guide that indicates why, when, and how to use the materials or topics contained in the handbook.
Publisher: Springer
ISBN: 9789811507199
Category : Business & Economics
Languages : en
Pages : 1443
Book Description
The primary purpose of this handbook is to clearly describe the current state of theories of systems sciences and to support their use and practice. There are many ways in which systems sciences can be described. This handbook takes a multifaceted view of systems sciences and describes them in terms of a relatively large number of dimensions, from natural and engineering science to social science and systems management perspectives. It is not the authors’ intent, however, to produce a catalog of systems science concepts, methodologies, tools, or products. Instead, the focus is on the structural network of a variety of topics. Special emphasis is given to a cyclic–interrelated view; for example, when a theory of systems sciences is described, there is also discussion of how and why the theory is relevant to modeling or practice in reality. Such an interrelationship between theory and practice is also illustrated when an applied research field in systems sciences is explained. The chapters in the handbook present definitive discussions of systems sciences from a wide array of perspectives. The needs of practitioners in industry and government as well as students aspiring to careers in systems sciences provide the motivation for the majority of the chapters. The handbook begins with a comprehensive introduction to the coverage that follows. It provides not only an introduction to systems sciences but also a brief overview and integration of the succeeding chapters in terms of a knowledge map. The introduction is intended to be used as a field guide that indicates why, when, and how to use the materials or topics contained in the handbook.
Decision Science: A Human-Oriented Perspective
Author: George Mengov
Publisher: Springer
ISBN: 3662471221
Category : Technology & Engineering
Languages : en
Pages : 170
Book Description
This book offers a new perspective on human decision-making by comparing the established methods in decision science with innovative modelling at the level of neurons and neural interactions. The book presents a new generation of computer models, which can predict with astonishing accuracy individual economic choices when people make them by quick intuition rather than by effort. A vision for a new kind of social science is outlined, whereby neural models of emotion and cognition capture the dynamics of socioeconomic systems and virtual social networks. The exposition is approachable by experts as well as by advanced students. The author is an Associate Professor of Decision Science with a doctorate in Computational Neuroscience, and a former software consultant to banks in the City of London.
Publisher: Springer
ISBN: 3662471221
Category : Technology & Engineering
Languages : en
Pages : 170
Book Description
This book offers a new perspective on human decision-making by comparing the established methods in decision science with innovative modelling at the level of neurons and neural interactions. The book presents a new generation of computer models, which can predict with astonishing accuracy individual economic choices when people make them by quick intuition rather than by effort. A vision for a new kind of social science is outlined, whereby neural models of emotion and cognition capture the dynamics of socioeconomic systems and virtual social networks. The exposition is approachable by experts as well as by advanced students. The author is an Associate Professor of Decision Science with a doctorate in Computational Neuroscience, and a former software consultant to banks in the City of London.
Systems Science and Population Health
Author: Abdulrahman M. El-Sayed
Publisher: Oxford University Press
ISBN: 0190492392
Category : Medical
Languages : en
Pages : 241
Book Description
Reductionism at the dawn of population health / Kristin Heitman -- Wrong answers : when simple interpretations create complex problems / David S. Fink, Katherine M. Keyes -- Complexity : the evolution towards 21st century science / Anton Palma, David W. Lounsbury -- Systems thinking in population health research and policy / Stephen Mooney -- Generation of systems maps: mapping complex systems of population health / Helen de Pinho -- Systems dynamics model / Eric Lofgren -- Agent-based modeling / Brandon Marshall -- Microsimulation / Sanjay Basu -- Social network analysis : the ubiquity of social networks and their importance for population health / Douglas A. Luke, Amar Dhand, Bobbi J. Carothers -- Machine learning / James H. Faghmous -- Systems science and the social determinants of population health / David S. Fink, Katherine M. Keyes, Magdalena Cerdá -- Systems approaches to understanding how the environment influences population health and population health interventions / Melissa Tracy -- Systems of behavior and population health / Mark Orr, Kathryn Ziemer, Daniel Chen -- Systems under your skin / Karina Standahl Olsen, Hege Bøvelstad, Eiliv Lund -- Frontiers in health modeling / Nathaniel Osgood -- Systems science and population health / Abdulrahman M. El-Sayed, Sandro Galea
Publisher: Oxford University Press
ISBN: 0190492392
Category : Medical
Languages : en
Pages : 241
Book Description
Reductionism at the dawn of population health / Kristin Heitman -- Wrong answers : when simple interpretations create complex problems / David S. Fink, Katherine M. Keyes -- Complexity : the evolution towards 21st century science / Anton Palma, David W. Lounsbury -- Systems thinking in population health research and policy / Stephen Mooney -- Generation of systems maps: mapping complex systems of population health / Helen de Pinho -- Systems dynamics model / Eric Lofgren -- Agent-based modeling / Brandon Marshall -- Microsimulation / Sanjay Basu -- Social network analysis : the ubiquity of social networks and their importance for population health / Douglas A. Luke, Amar Dhand, Bobbi J. Carothers -- Machine learning / James H. Faghmous -- Systems science and the social determinants of population health / David S. Fink, Katherine M. Keyes, Magdalena Cerdá -- Systems approaches to understanding how the environment influences population health and population health interventions / Melissa Tracy -- Systems of behavior and population health / Mark Orr, Kathryn Ziemer, Daniel Chen -- Systems under your skin / Karina Standahl Olsen, Hege Bøvelstad, Eiliv Lund -- Frontiers in health modeling / Nathaniel Osgood -- Systems science and population health / Abdulrahman M. El-Sayed, Sandro Galea