Real-time non-linear flight control of a fixed-wing UAV.

Real-time non-linear flight control of a fixed-wing UAV. PDF Author: Mario Landry
Publisher:
ISBN: 9780494838723
Category :
Languages : fr
Pages :

Get Book Here

Book Description

Real-time non-linear flight control of a fixed-wing UAV.

Real-time non-linear flight control of a fixed-wing UAV. PDF Author: Mario Landry
Publisher:
ISBN: 9780494838723
Category :
Languages : fr
Pages :

Get Book Here

Book Description


Nonlinear Control of Fixed-Wing UAVs with Time-Varying and Unstructured Uncertainties

Nonlinear Control of Fixed-Wing UAVs with Time-Varying and Unstructured Uncertainties PDF Author: Michail G. Michailidis
Publisher: Springer Nature
ISBN: 3030407160
Category : Technology & Engineering
Languages : en
Pages : 119

Get Book Here

Book Description
This book introduces a comprehensive and mathematically rigorous controller design for families of nonlinear systems with time-varying parameters and unstructured uncertainties. Although the presented methodology is general, the specific family of systems considered is the latest, NextGen, unconventional fixed-wing unmanned aircraft with circulation control or morphing wings, or a combination of both. The approach considers various sources of model and parameter uncertainty, while the controller design depends not on a nominal plant model, but instead on a family of admissible plants. In contrast to existing controller designs that consider multiple models and multiple controllers, the proposed approach is based on the ‘one controller fits all models’ within the unstructured uncertainty interval. The book presents a modeling-based analysis and synthesis approach with additive uncertainty weighting functions for accurate realization of the candidate systems. This differs significantly from existing designs in that it is capable of handling time-varying characteristics. This research monograph is suitable for scientists, engineers, researchers and graduate students with a background in control system theory who are interested in complex engineering nonlinear systems.

Design of Control Laws and State Observers for Fixed-Wing UAVs

Design of Control Laws and State Observers for Fixed-Wing UAVs PDF Author: Arturo Tadeo Espinoza-Fraire
Publisher: Elsevier
ISBN: 0323954049
Category : Technology & Engineering
Languages : en
Pages : 292

Get Book Here

Book Description
Design of Control Laws and State Observers for Fixed-Wing UAVs: Simulation and Experimental Approaches provides readers with modeling techniques, simulations, and results from real-time experiments using linear and nonlinear controllers and state observers. The book starts with an overview of the history of UAVs and the equations of motion applied to them. Following chapters analyze linear and nonlinear controllers, state observers, and the book concludes with a chapter discussing testbed development and experimental results, equipping readers with the knowledge they need to conduct their own stable UAV flights whether in simulation or real-time. Presents aerodynamic models for fixed-wing UAVs that can be used to design control laws and state observers Applies linear and nonlinear control theories and state observers to fixed-wing UAVs Provides real-time flight and simulation test results of fixed-wing UAVs with linear and nonlinear controllers

Robust Discrete-Time Flight Control of UAV with External Disturbances

Robust Discrete-Time Flight Control of UAV with External Disturbances PDF Author: Shuyi Shao
Publisher: Springer Nature
ISBN: 3030579573
Category : Technology & Engineering
Languages : en
Pages : 207

Get Book Here

Book Description
This book studies selected discrete-time flight control schemes for fixed-wing unmanned aerial vehicle (UAV) systems in the presence of system uncertainties, external disturbances and input saturation. The main contributions of this book for UAV systems are as follows: (i) the proposed integer-order discrete-time control schemes are based on the designed discrete-time disturbance observers (DTDOs) and the neural network (NN); and (ii) the fractional-order discrete-time control schemes are developed by using the fractional-order calculus theory, the NN and the DTDOs. The book offers readers a good understanding of how to establish discrete-time tracking control schemes for fixed-wing UAV systems subject to system uncertainties, external wind disturbances and input saturation. It represents a valuable reference guide for academic research on uncertain UAV systems, and can also support advanced / Ph.D. studies on control theory and engineering.

Fault-tolerant Flight Control and Guidance Systems

Fault-tolerant Flight Control and Guidance Systems PDF Author: Guillaume J. J. Ducard
Publisher: Springer Science & Business Media
ISBN: 1848825617
Category : Technology & Engineering
Languages : en
Pages : 268

Get Book Here

Book Description
This book offers a complete overview of fault-tolerant flight control techniques. Discussion covers the necessary equations for the modeling of small UAVs, a complete system based on extended Kalman filters, and a nonlinear flight control and guidance system.

Neural Network Based Adaptive Control for Autonomous Flight of Fixed Wing Unmanned Aerial Vehicles

Neural Network Based Adaptive Control for Autonomous Flight of Fixed Wing Unmanned Aerial Vehicles PDF Author: Vishwas Ramadas Puttige
Publisher:
ISBN:
Category : Adaptive control systems
Languages : en
Pages : 185

Get Book Here

Book Description
This thesis presents the development of small, inexpensive unmanned aerial vehicles (UAVs) to achieve autonomous fight. Fixed wing hobby model planes are modified and instrumented to form experimental platforms. Different sensors employed to collect the flight data are discussed along with their calibrations. The time constant and delay for the servo-actuators for the platform are estimated. Two different data collection and processing units based on micro-controller and PC104 architectures are developed and discussed. These units are also used to program the identification and control algorithms. Flight control of fixed wing UAVs is a challenging task due to the coupled, time-varying, nonlinear dynamic behaviour. One of the possible alternatives for the flight control system is to use the intelligent adaptive control techniques that provide online learning capability to cope with varying dynamics and disturbances. Neural network based indirect adaptive control strategy is applied for the current work. The two main components of the adaptive control technique are the identification block and the control block. Identification provides a mathematical model for the controller to adapt to varying dynamics. Neural network based identification provides a black-box identification technique wherein a suitable network provides prediction capability based upon the past inputs and outputs. Auto-regressive neural networks are employed for this to ensure good retention capabilities for the model that uses the past outputs and inputs along with the present inputs. Online and offline identification of UAV platforms are discussed based upon the flight data. Suitable modifications to the Levenberg-Marquardt training algorithm for online training are proposed. The effect of varying the different network parameters on the performance of the network are numerically tested out. A new performance index is proposed that is shown to improve the accuracy of prediction and also reduces the training time for these networks. The identification algorithms are validated both numerically and flight tested. A hardware-in-loop simulation system has been developed to test the identification and control algorithms before flight testing to identify the problems in real time implementation on the UAVs. This is developed to keep the validation process simple and a graphical user interface is provided to visualise the UAV flight during simulations. A dual neural network controller is proposed as the adaptive controller based upon the identification models. This has two neural networks collated together. One of the neural networks is trained online to adapt to changes in the dynamics. Two feedback loops are provided as part of the overall structure that is seen to improve the accuracy. Proofs for stability analysis in the form of convergence of the identifier and controller networks based on Lyapunov's technique are presented. In this analysis suitable bounds on the rate of learning for the networks are imposed. Numerical results are presented to validate the adaptive controller for single-input single-output as well as multi-input multi-output subsystems of the UAV. Real time validation results and various flight test results confirm the feasibility of the proposed adaptive technique as a reliable tool to achieve autonomous flight. The comparison of the proposed technique with a baseline gain scheduled controller both in numerical simulations as well as test flights bring out the salient adaptive feature of the proposed technique to the time-varying, nonlinear dynamics of the UAV platforms under different flying conditions.

Advanced Robust Nonlinear Control Approaches for Quadrotor Unmanned Aerial Vehicle

Advanced Robust Nonlinear Control Approaches for Quadrotor Unmanned Aerial Vehicle PDF Author: Moussa Labbadi
Publisher: Springer Nature
ISBN: 3030810143
Category : Technology & Engineering
Languages : en
Pages : 263

Get Book Here

Book Description
This book studies selected advanced flight control schemes for an uncertain quadrotor unmanned aerial vehicle (UAV) systems in the presence of constant external disturbances, parametric uncertainties, measurement noise, time-varying external disturbances, and random external disturbances. Furthermore, in all the control techniques proposed in this book, it includes the simulation results with comparison to other nonlinear control schemes recently developed for the tracking control of a quadrotor UAV. The main contributions of the present book for quadrotor UAV systems are as follows: (i) the proposed control methods are based on the high-order sliding mode controller (SMC) and hybrid control algorithm with an optimization method. (ii) the finite-time control schemes are developed by using fast terminal SMC (FTSMC), nonsingular FTSMC (NFTSMC), global time-varying SMC, and adaptive laws. (iii) the fractional-order flight control schemes are developed by using the fractional-order calculus theory, super twisting algorithm, NFTSMC, and the SMC. This book covers the research history and importance of quadrotor system subject to system uncertainties, external wind disturbances, and noise measurements, as well as the research status of advanced flight control methods, adaptive flight control methods, and flight control based on fractional-order theory. The book would be interesting to most academic undergraduate, postgraduates, researchers on flight control for drones and applications of advanced controllers in engineering field. This book presents a must-survey for advanced finite-time control for quadrotor system. Some parts of this book have the potential of becoming the courses for the modelling and control of autonomous flying machines. Readers (academic researcher, undergraduate student, postgraduate student, MBA/executive, and education practitioner) interested in nonlinear control methods find this book an investigation. This book can be used as a good reference for the academic research on the control theory, drones, terminal sliding mode control, and related to this or used in Ph.D. study of control theory and their application in field engineering.

Advanced UAV Aerodynamics, Flight Stability and Control

Advanced UAV Aerodynamics, Flight Stability and Control PDF Author: Pascual Marqués
Publisher: John Wiley & Sons
ISBN: 1118928687
Category : Technology & Engineering
Languages : en
Pages : 799

Get Book Here

Book Description
Comprehensively covers emerging aerospace technologies Advanced UAV aerodynamics, flight stability and control: Novel concepts, theory and applications presents emerging aerospace technologies in the rapidly growing field of unmanned aircraft engineering. Leading scientists, researchers and inventors describe the findings and innovations accomplished in current research programs and industry applications throughout the world. Topics included cover a wide range of new aerodynamics concepts and their applications for real world fixed-wing (airplanes), rotary wing (helicopter) and quad-rotor aircraft. The book begins with two introductory chapters that address fundamental principles of aerodynamics and flight stability and form a knowledge base for the student of Aerospace Engineering. The book then covers aerodynamics of fixed wing, rotary wing and hybrid unmanned aircraft, before introducing aspects of aircraft flight stability and control. Key features: Sound technical level and inclusion of high-quality experimental and numerical data. Direct application of the aerodynamic technologies and flight stability and control principles described in the book in the development of real-world novel unmanned aircraft concepts. Written by world-class academics, engineers, researchers and inventors from prestigious institutions and industry. The book provides up-to-date information in the field of Aerospace Engineering for university students and lecturers, aerodynamics researchers, aerospace engineers, aircraft designers and manufacturers.

Flight Dynamics Principles

Flight Dynamics Principles PDF Author: Michael V. Cook
Publisher: Elsevier
ISBN: 0080550363
Category : Technology & Engineering
Languages : en
Pages : 491

Get Book Here

Book Description
The study of flight dynamics requires a thorough understanding of the theory of the stability and control of aircraft, an appreciation of flight control systems and a comprehensive grounding in the theory of automatic control. Flight Dynamics Principles provides all three in an accessible and student focussed text. Written for those coming to the subject for the first time the book is suitable as a complete first course text. It provides a secure foundation from which to move on to more advanced topics such a non-linear flight dynamics, simulation and advanced flight control, and is ideal for those on course including flight mechanics, aircraft handling qualities, aircraft stability and control. Enhances by detailed worked examples, case studies and aircraft operating condition software, this complete course text, by a renowned flight dynamicist, is widely used on aircraft engineering courses Suitable as a complete first course text, it provides a secure foundation from which to move on to more advanced topics such a non-linear flight dynamics, simulation and advanced flight control End of chapter exercises, detailed worked examples, and case studies aid understanding and relate concepts to real world applications Covers key contemporary topics including all aspects of optimization, emissions, regulation and automatic flight control and UAVs Accompanying MathCAD software source code for performance model generation and optimization

Design of a Nonlinear Dynamic Inversion Based Flight Control System for a Flying-wing UAV

Design of a Nonlinear Dynamic Inversion Based Flight Control System for a Flying-wing UAV PDF Author: Ding-wen Chen
Publisher:
ISBN:
Category :
Languages : en
Pages : 90

Get Book Here

Book Description
The purpose of this thesis is to design an effective nonlinear flight control system that only uses elevon to control the flying-wing UAV and to design the guidance law that can track the specified trajectory. The nonlinear dynamic inversion technique is adopted for this control system design. It can effectively control the roll rate and pitch rate of the aircraft and meet the design requirement of the desired dynamics generated to satisfy certain flying qualities. The thesis also developed an infinite-horizon LQR based three-dimensional adaptive optimal guidance law to track the designated flight path. Finally, computer simulations were successfully demonstrated to show that the proposed control law and guidance law can control the flying-wing UAV track the designated trajectory effectively.