Rational Design of Nanostructured Polymer Electrolytes and Solid–Liquid Interphases for Lithium Batteries

Rational Design of Nanostructured Polymer Electrolytes and Solid–Liquid Interphases for Lithium Batteries PDF Author: Snehashis Choudhury
Publisher: Springer Nature
ISBN: 3030289435
Category : Technology & Engineering
Languages : en
Pages : 230

Get Book

Book Description
This thesis makes significant advances in the design of electrolytes and interfaces in electrochemical cells that utilize reactive metals as anodes. Such cells are of contemporary interest because they offer substantially higher charge storage capacity than state-of-the-art lithium-ion battery technology. Batteries based on metallic anodes are currently considered impractical and unsafe because recharge of the anode causes physical and chemical instabilities that produce dendritic deposition of the metal leading to catastrophic failure via thermal runaway. This thesis utilizes a combination of chemical synthesis, physical & electrochemical analysis, and materials theory to investigate structure, ion transport properties, and electrochemical behaviors of hybrid electrolytes and interfacial phases designed to prevent such instabilities. In particular, it demonstrates that relatively low-modulus electrolytes composed of cross-linked networks of polymer-grafted nanoparticles stabilize electrodeposition of reactive metals by multiple processes, including screening electrode electrolyte interactions at electrochemical interfaces and by regulating ion transport in tortuous nanopores. This discovery is significant because it overturns a longstanding perception in the field of nanoparticle-polymer hybrid electrolytes that only solid electrolytes with mechanical modulus higher than that of the metal electrode are able to stabilize electrodeposition of reactive metals.

Rational Design of Nanostructured Polymer Electrolytes and Solid–Liquid Interphases for Lithium Batteries

Rational Design of Nanostructured Polymer Electrolytes and Solid–Liquid Interphases for Lithium Batteries PDF Author: Snehashis Choudhury
Publisher: Springer Nature
ISBN: 3030289435
Category : Technology & Engineering
Languages : en
Pages : 230

Get Book

Book Description
This thesis makes significant advances in the design of electrolytes and interfaces in electrochemical cells that utilize reactive metals as anodes. Such cells are of contemporary interest because they offer substantially higher charge storage capacity than state-of-the-art lithium-ion battery technology. Batteries based on metallic anodes are currently considered impractical and unsafe because recharge of the anode causes physical and chemical instabilities that produce dendritic deposition of the metal leading to catastrophic failure via thermal runaway. This thesis utilizes a combination of chemical synthesis, physical & electrochemical analysis, and materials theory to investigate structure, ion transport properties, and electrochemical behaviors of hybrid electrolytes and interfacial phases designed to prevent such instabilities. In particular, it demonstrates that relatively low-modulus electrolytes composed of cross-linked networks of polymer-grafted nanoparticles stabilize electrodeposition of reactive metals by multiple processes, including screening electrode electrolyte interactions at electrochemical interfaces and by regulating ion transport in tortuous nanopores. This discovery is significant because it overturns a longstanding perception in the field of nanoparticle-polymer hybrid electrolytes that only solid electrolytes with mechanical modulus higher than that of the metal electrode are able to stabilize electrodeposition of reactive metals.

Rational Design of Nanostructured Polymer Electrolytes and Solid-liquid Interphases for Lithium Batteries

Rational Design of Nanostructured Polymer Electrolytes and Solid-liquid Interphases for Lithium Batteries PDF Author: Snehashis Choudhury
Publisher:
ISBN: 9783030289447
Category : Lithium cells
Languages : en
Pages : 239

Get Book

Book Description
This thesis makes significant advances in the design of electrolytes and interfaces in electrochemical cells that utilize reactive metals as anodes. Such cells are of contemporary interest because they offer substantially higher charge storage capacity than state-of-the-art lithium-ion battery technology. Batteries based on metallic anodes are currently considered impractical and unsafe because recharge of the anode causes physical and chemical instabilities that produce dendritic deposition of the metal leading to catastrophic failure via thermal runaway. This thesis utilizes a combination of chemical synthesis, physical & electrochemical analysis, and materials theory to investigate structure, ion transport properties, and electrochemical behaviors of hybrid electrolytes and interfacial phases designed to prevent such instabilities. In particular, it demonstrates that relatively low-modulus electrolytes composed of cross-linked networks of polymer-grafted nanoparticles stabilize electrodeposition of reactive metals by multiple processes, including screening electrode electrolyte interactions at electrochemical interfaces and by regulating ion transport in tortuous nanopores. This discovery is significant because it overturns a longstanding perception in the field of nanoparticle-polymer hybrid electrolytes that only solid electrolytes with mechanical modulus higher than that of the metal electrode are able to stabilize electrodeposition of reactive metals.

Energy Storage Systems Beyond Li-Ion Intercalation Chemistry

Energy Storage Systems Beyond Li-Ion Intercalation Chemistry PDF Author: Kai Zhu
Publisher: Frontiers Media SA
ISBN: 2889668193
Category : Science
Languages : en
Pages : 134

Get Book

Book Description


Hard X-ray Photoelectron Spectroscopy (HAXPES)

Hard X-ray Photoelectron Spectroscopy (HAXPES) PDF Author: Joseph Woicik
Publisher: Springer
ISBN: 3319240439
Category : Science
Languages : en
Pages : 576

Get Book

Book Description
This book provides the first complete and up-to-date summary of the state of the art in HAXPES and motivates readers to harness its powerful capabilities in their own research. The chapters are written by experts. They include historical work, modern instrumentation, theory and applications. This book spans from physics to chemistry and materials science and engineering. In consideration of the rapid development of the technique, several chapters include highlights illustrating future opportunities as well.

Nanostructures and Nanomaterials for Batteries

Nanostructures and Nanomaterials for Batteries PDF Author: Yu-Guo Guo
Publisher: Springer
ISBN: 9811362335
Category : Technology & Engineering
Languages : en
Pages : 379

Get Book

Book Description
This book discusses the roles of nanostructures and nanomaterials in the development of battery materials for state-of-the-art electrochemical energy storage systems, and provides detailed insights into the fundamentals of why batteries need nanostructures and nanomaterials. It explores the advantages offered by nanostructure electrode materials, the challenges of using nanostructured materials in batteries, as well as the rational design of nanostructures and nanomaterials to achieve optimal battery performance. Further, it closely examines the latest advances in the application of nanostructures and nanomaterials for future rechargeable batteries, including high-energy and high-power lithium ion batteries, lithium metal batteries (Li-O2, Li-S, Li-Se, etc.), all-solid-state batteries, and other metal batteries (Na, Mg, Al, etc.). It is a valuable reference resource for readers interested in or involved in research on energy storage, energy materials, electrochemistry and nanotechnology.

Interfaces, Phenomena, and Nanostructures in Lithium Batteries

Interfaces, Phenomena, and Nanostructures in Lithium Batteries PDF Author: Albert R. Landgrebe
Publisher: The Electrochemical Society
ISBN: 9781566773058
Category : Science
Languages : en
Pages : 370

Get Book

Book Description


Materials for Lithium-Ion Batteries

Materials for Lithium-Ion Batteries PDF Author: Christian Julien
Publisher: Springer Science & Business Media
ISBN: 9780792366508
Category : Technology & Engineering
Languages : en
Pages : 658

Get Book

Book Description
A lithium-ion battery comprises essentially three components: two intercalation compounds as positive and negative electrodes, separated by an ionic-electronic electrolyte. Each component is discussed in sufficient detail to give the practising engineer an understanding of the subject, providing guidance on the selection of suitable materials in actual applications. Each topic covered is written by an expert, reflecting many years of experience in research and applications. Each topic is provided with an extensive list of references, allowing easy access to further information. Readership: Research students and engineers seeking an expert review. Graduate courses in electrical drives can also be designed around the book by selecting sections for discussion. The coverage and treatment make the book indispensable for the lithium battery community.

Polymer-based Nanocomposites for Energy and Environmental Applications

Polymer-based Nanocomposites for Energy and Environmental Applications PDF Author: Mohammad Jawaid
Publisher: Woodhead Publishing
ISBN: 0081019114
Category : Technology & Engineering
Languages : en
Pages : 700

Get Book

Book Description
Polymer-Based Nanocomposites for Energy and Environmental Applications provides a comprehensive and updated review of major innovations in the field of polymer-based nanocomposites for energy and environmental applications. It covers properties and applications, including the synthesis of polymer based nanocomposites from different sources and tactics on the efficacy and major challenges associated with successful scale-up fabrication. The chapters provide cutting-edge, up-to-date research findings on the use of polymer based nanocomposites in energy and environmental applications, while also detailing how to achieve material’s characteristics and significant enhancements in physical, chemical, mechanical and thermal properties. It is an essential reference for future research in polymer based nanocomposites as topics such as sustainable, recyclable and eco-friendly methods for highly innovative and applied materials are current topics of importance. Covers a wide range of research on polymer based nanocomposites Provides updates on the most relevant polymer based nanocomposites and their prodigious potential in the fields of energy and the environment Demonstrates systematic approaches and investigations from the design, synthesis, characterization and applications of polymer based nanocomposites Presents a useful reference and technical guide for university academics and postgraduate students (Masters and Ph.D.)

Functional Membranes for High Efficiency Molecule and Ion Transport

Functional Membranes for High Efficiency Molecule and Ion Transport PDF Author: Jingtao Wang
Publisher: Springer Nature
ISBN: 9811981558
Category : Science
Languages : en
Pages : 306

Get Book

Book Description
This book provides an overview of functional membranes for efficient ion/molecule transfer and separation. It first presents the design, fabrication, structure, and performance of several kinds of membranes. Then, the application of membrane technology in organic solvent nanofiltration, hydrogen fuel cells, and solid-state lithium batteries is introduced. Furthermore, the book proposes strategies of strengthening the ion/molecular-level separation and transfer process in membrane processes. It also analyzes the development status, existing problems, and optimization methods in the field of membranes and membrane processes. Finally, it highlights the construction strategy of membrane structures, the structure–performance relationships as well as the transfer and separation mechanisms. The target group of this book is academics and researchers in materials science, chemical engineering, biomedical engineering, and other related fields.

Polymer Matrix Wave-Transparent Composites

Polymer Matrix Wave-Transparent Composites PDF Author: Junwei Gu
Publisher: John Wiley & Sons
ISBN: 3527350993
Category : Technology & Engineering
Languages : en
Pages : 309

Get Book

Book Description
Polymer Matrix Wave-Transparent Composites One-stop reference on important recent research accomplishments in the field of polymer matrix wave-transparent composites Polymer Matrix Wave-Transparent Composites: Materials, Properties, and Applications is a unique book that focuses on polymer matrix wave-transparent composites for electromagnetic wave transmission of a certain frequency, discussing various aspects of design, fabrication, structure, properties, measurement methods, and mechanisms, along with practical applications of functional polymer composites in industrial fields ranging from aircraft radomes, to radomes for ground, shipborne, and airborne purposes, to radomes for 5G communication, to printed circuit boards and beyond. Edited by four highly qualified academics and contributed to by well-known experts in the field, Polymer Matrix Wave-Transparent Composites includes detailed discussion on sample topics such as: Interface between the reinforced fiber and polymer matrix, including basic concepts, characterization, and the most common method of functionalization for the interface Mechanism of wave-transparent, factors that influence wave-transparent performance, and fabrication techniques Processes of hand paste molding, pressure bag molding, laminated molding, resin transfer molding (RTM), and winding molding Physical and chemical properties of the inorganic fibers (glass fibers and quartz fibers) and organic fibers (aramid fibers, ultra-high molecular weight polyethylene fibers and poly-p-phenylene benzobisoxazole fibers) Polymer Matrix Wave-Transparent Composites is an essential reference on the latest research in the field for researchers and related professionals, as well as for individuals who are not familiar with the field and wish to gain a holistic understanding in one place.