R for Business Analytics

R for Business Analytics PDF Author: A Ohri
Publisher: Springer Science & Business Media
ISBN: 1461443431
Category : Mathematics
Languages : en
Pages : 320

Get Book Here

Book Description
R for Business Analytics looks at some of the most common tasks performed by business analysts and helps the user navigate the wealth of information in R and its 4000 packages. With this information the reader can select the packages that can help process the analytical tasks with minimum effort and maximum usefulness. The use of Graphical User Interfaces (GUI) is emphasized in this book to further cut down and bend the famous learning curve in learning R. This book is aimed to help you kick-start with analytics including chapters on data visualization, code examples on web analytics and social media analytics, clustering, regression models, text mining, data mining models and forecasting. The book tries to expose the reader to a breadth of business analytics topics without burying the user in needless depth. The included references and links allow the reader to pursue business analytics topics. This book is aimed at business analysts with basic programming skills for using R for Business Analytics. Note the scope of the book is neither statistical theory nor graduate level research for statistics, but rather it is for business analytics practitioners. Business analytics (BA) refers to the field of exploration and investigation of data generated by businesses. Business Intelligence (BI) is the seamless dissemination of information through the organization, which primarily involves business metrics both past and current for the use of decision support in businesses. Data Mining (DM) is the process of discovering new patterns from large data using algorithms and statistical methods. To differentiate between the three, BI is mostly current reports, BA is models to predict and strategize and DM matches patterns in big data. The R statistical software is the fastest growing analytics platform in the world, and is established in both academia and corporations for robustness, reliability and accuracy. The book utilizes Albert Einstein’s famous remarks on making things as simple as possible, but no simpler. This book will blow the last remaining doubts in your mind about using R in your business environment. Even non-technical users will enjoy the easy-to-use examples. The interviews with creators and corporate users of R make the book very readable. The author firmly believes Isaac Asimov was a better writer in spreading science than any textbook or journal author.

R for Business Analytics

R for Business Analytics PDF Author: A Ohri
Publisher: Springer Science & Business Media
ISBN: 1461443423
Category : Business & Economics
Languages : en
Pages : 322

Get Book Here

Book Description
This book examines common tasks performed by business analysts and helps the reader navigate the wealth of information in R and its 4000 packages to create useful analytics applications. Includes interviews with corporate users of R, and easy-to-use examples.

Data Mining and Business Analytics with R

Data Mining and Business Analytics with R PDF Author: Johannes Ledolter
Publisher: John Wiley & Sons
ISBN: 1118572157
Category : Mathematics
Languages : en
Pages : 304

Get Book Here

Book Description
Collecting, analyzing, and extracting valuable information from a large amount of data requires easily accessible, robust, computational and analytical tools. Data Mining and Business Analytics with R utilizes the open source software R for the analysis, exploration, and simplification of large high-dimensional data sets. As a result, readers are provided with the needed guidance to model and interpret complicated data and become adept at building powerful models for prediction and classification. Highlighting both underlying concepts and practical computational skills, Data Mining and Business Analytics with R begins with coverage of standard linear regression and the importance of parsimony in statistical modeling. The book includes important topics such as penalty-based variable selection (LASSO); logistic regression; regression and classification trees; clustering; principal components and partial least squares; and the analysis of text and network data. In addition, the book presents: A thorough discussion and extensive demonstration of the theory behind the most useful data mining tools Illustrations of how to use the outlined concepts in real-world situations Readily available additional data sets and related R code allowing readers to apply their own analyses to the discussed materials Numerous exercises to help readers with computing skills and deepen their understanding of the material Data Mining and Business Analytics with R is an excellent graduate-level textbook for courses on data mining and business analytics. The book is also a valuable reference for practitioners who collect and analyze data in the fields of finance, operations management, marketing, and the information sciences.

Business Analytics Using R - A Practical Approach

Business Analytics Using R - A Practical Approach PDF Author: Umesh R Hodeghatta
Publisher: Apress
ISBN: 1484225147
Category : Computers
Languages : en
Pages : 291

Get Book Here

Book Description
Learn the fundamental aspects of the business statistics, data mining, and machine learning techniques required to understand the huge amount of data generated by your organization. This book explains practical business analytics through examples, covers the steps involved in using it correctly, and shows you the context in which a particular technique does not make sense. Further, Practical Business Analytics using R helps you understand specific issues faced by organizations and how the solutions to these issues can be facilitated by business analytics. This book will discuss and explore the following through examples and case studies: An introduction to R: data management and R functions The architecture, framework, and life cycle of a business analytics project Descriptive analytics using R: descriptive statistics and data cleaning Data mining: classification, association rules, and clustering Predictive analytics: simple regression, multiple regression, and logistic regression This book includes case studies on important business analytic techniques, such as classification, association, clustering, and regression. The R language is the statistical tool used to demonstrate the concepts throughout the book. What You Will Learn • Write R programs to handle data • Build analytical models and draw useful inferences from them • Discover the basic concepts of data mining and machine learning • Carry out predictive modeling • Define a business issue as an analytical problem Who This Book Is For Beginners who want to understand and learn the fundamentals of analytics using R. Students, managers, executives, strategy and planning professionals, software professionals, and BI/DW professionals.

Customer and Business Analytics

Customer and Business Analytics PDF Author: Daniel S. Putler
Publisher: CRC Press
ISBN: 146650398X
Category : Business & Economics
Languages : en
Pages : 314

Get Book Here

Book Description
Customer and Business Analytics: Applied Data Mining for Business Decision Making Using R explains and demonstrates, via the accompanying open-source software, how advanced analytical tools can address various business problems. It also gives insight into some of the challenges faced when deploying these tools. Extensively classroom-tested, the tex

A Business Analyst's Introduction to Business Analytics

A Business Analyst's Introduction to Business Analytics PDF Author: Adam Fleischhacker
Publisher:
ISBN:
Category :
Languages : en
Pages : 298

Get Book Here

Book Description
This up-to-date business analytics textbook (published in July 2020) will get you harnessing the power of the R programming language to: manipulate and model data, discover and communicate insight, to visually communicate that insight, and successfully advocate for change within an organization. Book Description A frequent teaching-award winning professor with an analytics-industry background shares his hands-on guide to learning business analytics. It is the first textbook addressing a complete and modern business analytics workflow that includes data manipulation, data visualization, modelling business problems with graphical models, translating graphical models into code, and presenting insights back to stakeholders. Book Highlights Content that is accessible to anyone, even most analytics beginners. If you have taken a stats course, you are good to go. Assumes no knowledge of the R programming language. Provides introduction to R, RStudio, and the Tidyverse. Provides a solid foundation and an implementable workflow for anyone wading into the Bayesian inference waters. Provides a complete workflow within the R-ecosystem; there is no need to learn several programming languages or work through clunky interfaces between software tools. First book introducing two powerful R-packages - `causact` for visual modelling of business problems and `greta` which is an R interface to `TensorFlow` used for Bayesian inference. Uses the intuitive coding practices of the `tidyverse` including using `dplyr` for data manipulation and `ggplot2` for data visualization. Datasets that are freely and easily accessible. Code for generating all results and almost every visualization used in the textbook. Do not learn statistical computation or fancy math in a vacuum, learn it through this guide within the context of solving business problems.

R for Business Analytics

R for Business Analytics PDF Author: A Ohri
Publisher: Springer Science & Business Media
ISBN: 1461443431
Category : Mathematics
Languages : en
Pages : 320

Get Book Here

Book Description
R for Business Analytics looks at some of the most common tasks performed by business analysts and helps the user navigate the wealth of information in R and its 4000 packages. With this information the reader can select the packages that can help process the analytical tasks with minimum effort and maximum usefulness. The use of Graphical User Interfaces (GUI) is emphasized in this book to further cut down and bend the famous learning curve in learning R. This book is aimed to help you kick-start with analytics including chapters on data visualization, code examples on web analytics and social media analytics, clustering, regression models, text mining, data mining models and forecasting. The book tries to expose the reader to a breadth of business analytics topics without burying the user in needless depth. The included references and links allow the reader to pursue business analytics topics. This book is aimed at business analysts with basic programming skills for using R for Business Analytics. Note the scope of the book is neither statistical theory nor graduate level research for statistics, but rather it is for business analytics practitioners. Business analytics (BA) refers to the field of exploration and investigation of data generated by businesses. Business Intelligence (BI) is the seamless dissemination of information through the organization, which primarily involves business metrics both past and current for the use of decision support in businesses. Data Mining (DM) is the process of discovering new patterns from large data using algorithms and statistical methods. To differentiate between the three, BI is mostly current reports, BA is models to predict and strategize and DM matches patterns in big data. The R statistical software is the fastest growing analytics platform in the world, and is established in both academia and corporations for robustness, reliability and accuracy. The book utilizes Albert Einstein’s famous remarks on making things as simple as possible, but no simpler. This book will blow the last remaining doubts in your mind about using R in your business environment. Even non-technical users will enjoy the easy-to-use examples. The interviews with creators and corporate users of R make the book very readable. The author firmly believes Isaac Asimov was a better writer in spreading science than any textbook or journal author.

R for Cloud Computing

R for Cloud Computing PDF Author: A Ohri
Publisher: Springer
ISBN: 1493917021
Category : Computers
Languages : en
Pages : 281

Get Book Here

Book Description
R for Cloud Computing looks at some of the tasks performed by business analysts on the desktop (PC era) and helps the user navigate the wealth of information in R and its 4000 packages as well as transition the same analytics using the cloud. With this information the reader can select both cloud vendors and the sometimes confusing cloud ecosystem as well as the R packages that can help process the analytical tasks with minimum effort, cost and maximum usefulness and customization. The use of Graphical User Interfaces (GUI) and Step by Step screenshot tutorials is emphasized in this book to lessen the famous learning curve in learning R and some of the needless confusion created in cloud computing that hinders its widespread adoption. This will help you kick-start analytics on the cloud including chapters on both cloud computing, R, common tasks performed in analytics including the current focus and scrutiny of Big Data Analytics, setting up and navigating cloud providers. Readers are exposed to a breadth of cloud computing choices and analytics topics without being buried in needless depth. The included references and links allow the reader to pursue business analytics on the cloud easily. It is aimed at practical analytics and is easy to transition from existing analytical set up to the cloud on an open source system based primarily on R. This book is aimed at industry practitioners with basic programming skills and students who want to enter analytics as a profession. Note the scope of the book is neither statistical theory nor graduate level research for statistics, but rather it is for business analytics practitioners. It will also help researchers and academics but at a practical rather than conceptual level. The R statistical software is the fastest growing analytics platform in the world, and is established in both academia and corporations for robustness, reliability and accuracy. The cloud computing paradigm is firmly established as the next generation of computing from microprocessors to desktop PCs to cloud.

Python for R Users

Python for R Users PDF Author: Ajay Ohri
Publisher: John Wiley & Sons
ISBN: 1119126762
Category : Computers
Languages : en
Pages : 369

Get Book Here

Book Description
The definitive guide for statisticians and data scientists who understand the advantages of becoming proficient in both R and Python The first book of its kind, Python for R Users: A Data Science Approach makes it easy for R programmers to code in Python and Python users to program in R. Short on theory and long on actionable analytics, it provides readers with a detailed comparative introduction and overview of both languages and features concise tutorials with command-by-command translations—complete with sample code—of R to Python and Python to R. Following an introduction to both languages, the author cuts to the chase with step-by-step coverage of the full range of pertinent programming features and functions, including data input, data inspection/data quality, data analysis, and data visualization. Statistical modeling, machine learning, and data mining—including supervised and unsupervised data mining methods—are treated in detail, as are time series forecasting, text mining, and natural language processing. • Features a quick-learning format with concise tutorials and actionable analytics • Provides command-by-command translations of R to Python and vice versa • Incorporates Python and R code throughout to make it easier for readers to compare and contrast features in both languages • Offers numerous comparative examples and applications in both programming languages • Designed for use for practitioners and students that know one language and want to learn the other • Supplies slides useful for teaching and learning either software on a companion website Python for R Users: A Data Science Approach is a valuable working resource for computer scientists and data scientists that know R and would like to learn Python or are familiar with Python and want to learn R. It also functions as textbook for students of computer science and statistics. A. Ohri is the founder of Decisionstats.com and currently works as a senior data scientist. He has advised multiple startups in analytics off-shoring, analytics services, and analytics education, as well as using social media to enhance buzz for analytics products. Mr. Ohri's research interests include spreading open source analytics, analyzing social media manipulation with mechanism design, simpler interfaces for cloud computing, investigating climate change and knowledge flows. His other books include R for Business Analytics and R for Cloud Computing.

Predictive Analytics using R

Predictive Analytics using R PDF Author: Jeffrey Strickland
Publisher: Lulu.com
ISBN: 131284101X
Category : Business & Economics
Languages : en
Pages : 554

Get Book Here

Book Description
This book is about predictive analytics. Yet, each chapter could easily be handled by an entire volume of its own. So one might think of this a survey of predictive modeling. A predictive model is a statistical model or machine learning model used to predict future behavior based on past behavior. In order to use this book, one should have a basic understanding of mathematical statistics - it is an advanced book. Some theoretical foundations are laid out but not proven, but references are provided for additional coverage. Every chapter culminates in an example using R. R is a free software environment for statistical computing and graphics. You may download R, from a preferred CRAN mirror at http: //www.r-project.org/. The book is organized so that statistical models are presented first (hopefully in a logical order), followed by machine learning models, and then applications: uplift modeling and time series. One could use this a textbook with problem solving in R-but there are no "by-hand" exercises.

Behavioral Data Analysis with R and Python

Behavioral Data Analysis with R and Python PDF Author: Florent Buisson
Publisher: "O'Reilly Media, Inc."
ISBN: 1492061344
Category : Business & Economics
Languages : en
Pages : 361

Get Book Here

Book Description
Harness the full power of the behavioral data in your company by learning tools specifically designed for behavioral data analysis. Common data science algorithms and predictive analytics tools treat customer behavioral data, such as clicks on a website or purchases in a supermarket, the same as any other data. Instead, this practical guide introduces powerful methods specifically tailored for behavioral data analysis. Advanced experimental design helps you get the most out of your A/B tests, while causal diagrams allow you to tease out the causes of behaviors even when you can't run experiments. Written in an accessible style for data scientists, business analysts, and behavioral scientists, thispractical book provides complete examples and exercises in R and Python to help you gain more insight from your data--immediately. Understand the specifics of behavioral data Explore the differences between measurement and prediction Learn how to clean and prepare behavioral data Design and analyze experiments to drive optimal business decisions Use behavioral data to understand and measure cause and effect Segment customers in a transparent and insightful way