Author: Alexander Polishchuk
Publisher: American Mathematical Soc.
ISBN: 0821838342
Category : Mathematics
Languages : en
Pages : 176
Book Description
This book introduces recent developments in the study of algebras defined by quadratic relations. One of the main problems in the study of these (and similarly defined) algebras is how to control their size. A central notion in solving this problem is the notion of a Koszul algebra, which was introduced in 1970 by S. Priddy and then appeared in many areas of mathematics, such as algebraic geometry, representation theory, non commutative geometry, $K$-theory, number theory, and non commutative linear algebra.The authors give a coherent exposition of the theory of quadratic and Koszul algebras, including various definitions of Koszulness, duality theory, Poincare-Birkhoff-Witt-type theorems for Koszul algebras, and the Koszul deformation principle. In the concluding chapter of the book, they explain a surprising connection between Koszul algebras and one-dependent discrete-time stochastic processes. The book can be used by graduate students and researchers working in algebra and any of the above-mentioned areas of mathematics.
Quadratic Algebras
Author: Alexander Polishchuk
Publisher: American Mathematical Soc.
ISBN: 0821838342
Category : Mathematics
Languages : en
Pages : 176
Book Description
This book introduces recent developments in the study of algebras defined by quadratic relations. One of the main problems in the study of these (and similarly defined) algebras is how to control their size. A central notion in solving this problem is the notion of a Koszul algebra, which was introduced in 1970 by S. Priddy and then appeared in many areas of mathematics, such as algebraic geometry, representation theory, non commutative geometry, $K$-theory, number theory, and non commutative linear algebra.The authors give a coherent exposition of the theory of quadratic and Koszul algebras, including various definitions of Koszulness, duality theory, Poincare-Birkhoff-Witt-type theorems for Koszul algebras, and the Koszul deformation principle. In the concluding chapter of the book, they explain a surprising connection between Koszul algebras and one-dependent discrete-time stochastic processes. The book can be used by graduate students and researchers working in algebra and any of the above-mentioned areas of mathematics.
Publisher: American Mathematical Soc.
ISBN: 0821838342
Category : Mathematics
Languages : en
Pages : 176
Book Description
This book introduces recent developments in the study of algebras defined by quadratic relations. One of the main problems in the study of these (and similarly defined) algebras is how to control their size. A central notion in solving this problem is the notion of a Koszul algebra, which was introduced in 1970 by S. Priddy and then appeared in many areas of mathematics, such as algebraic geometry, representation theory, non commutative geometry, $K$-theory, number theory, and non commutative linear algebra.The authors give a coherent exposition of the theory of quadratic and Koszul algebras, including various definitions of Koszulness, duality theory, Poincare-Birkhoff-Witt-type theorems for Koszul algebras, and the Koszul deformation principle. In the concluding chapter of the book, they explain a surprising connection between Koszul algebras and one-dependent discrete-time stochastic processes. The book can be used by graduate students and researchers working in algebra and any of the above-mentioned areas of mathematics.
Quadratic Algebras, Clifford Algebras, and Arithmetic Witt Groups
Author: Alexander J. Hahn
Publisher: Springer Science & Business Media
ISBN: 146846311X
Category : Mathematics
Languages : en
Pages : 296
Book Description
Quadratic Algebras, Clifford Algebras, and Arithmetic Forms introduces mathematicians to the large and dynamic area of algebras and forms over commutative rings. The book begins very elementary and progresses gradually in its degree of difficulty. Topics include the connection between quadratic algebras, Clifford algebras and quadratic forms, Brauer groups, the matrix theory of Clifford algebras over fields, Witt groups of quadratic and symmetric bilinear forms. Some of the new results included by the author concern the representation of Clifford algebras, the structure of Arf algebra in the free case, connections between the group of isomorphic classes of finitely generated projectives of rank one and arithmetic results about the quadratic Witt group.
Publisher: Springer Science & Business Media
ISBN: 146846311X
Category : Mathematics
Languages : en
Pages : 296
Book Description
Quadratic Algebras, Clifford Algebras, and Arithmetic Forms introduces mathematicians to the large and dynamic area of algebras and forms over commutative rings. The book begins very elementary and progresses gradually in its degree of difficulty. Topics include the connection between quadratic algebras, Clifford algebras and quadratic forms, Brauer groups, the matrix theory of Clifford algebras over fields, Witt groups of quadratic and symmetric bilinear forms. Some of the new results included by the author concern the representation of Clifford algebras, the structure of Arf algebra in the free case, connections between the group of isomorphic classes of finitely generated projectives of rank one and arithmetic results about the quadratic Witt group.
Tame Algebras and Integral Quadratic Forms
Author: Claus M. Ringel
Publisher: Springer
ISBN: 3540391274
Category : Mathematics
Languages : en
Pages : 390
Book Description
Publisher: Springer
ISBN: 3540391274
Category : Mathematics
Languages : en
Pages : 390
Book Description
Quadratic Mappings and Clifford Algebras
Author: Jacques Helmstetter
Publisher: Springer Science & Business Media
ISBN: 3764386061
Category : Mathematics
Languages : en
Pages : 512
Book Description
After general properties of quadratic mappings over rings, the authors more intensely study quadratic forms, and especially their Clifford algebras. To this purpose they review the required part of commutative algebra, and they present a significant part of the theory of graded Azumaya algebras. Interior multiplications and deformations of Clifford algebras are treated with the most efficient methods.
Publisher: Springer Science & Business Media
ISBN: 3764386061
Category : Mathematics
Languages : en
Pages : 512
Book Description
After general properties of quadratic mappings over rings, the authors more intensely study quadratic forms, and especially their Clifford algebras. To this purpose they review the required part of commutative algebra, and they present a significant part of the theory of graded Azumaya algebras. Interior multiplications and deformations of Clifford algebras are treated with the most efficient methods.
Bilinear Algebra
Author: Kazimierz Szymiczek
Publisher: CRC Press
ISBN: 9789056990763
Category : Mathematics
Languages : en
Pages : 508
Book Description
Giving an easily accessible elementary introduction to the algebraic theory of quadratic forms, this book covers both Witt's theory and Pfister's theory of quadratic forms. Leading topics include the geometry of bilinear spaces, classification of bilinear spaces up to isometry depending on the ground field, formally real fields, Pfister forms, the Witt ring of an arbitrary field (characteristic two included), prime ideals of the Witt ring, Brauer group of a field, Hasse and Witt invariants of quadratic forms, and equivalence of fields with respect to quadratic forms. Problem sections are included at the end of each chapter. There are two appendices: the first gives a treatment of Hasse and Witt invariants in the language of Steinberg symbols, and the second contains some more advanced problems in 10 groups, including the u-invariant, reduced and stable Witt rings, and Witt equivalence of fields.
Publisher: CRC Press
ISBN: 9789056990763
Category : Mathematics
Languages : en
Pages : 508
Book Description
Giving an easily accessible elementary introduction to the algebraic theory of quadratic forms, this book covers both Witt's theory and Pfister's theory of quadratic forms. Leading topics include the geometry of bilinear spaces, classification of bilinear spaces up to isometry depending on the ground field, formally real fields, Pfister forms, the Witt ring of an arbitrary field (characteristic two included), prime ideals of the Witt ring, Brauer group of a field, Hasse and Witt invariants of quadratic forms, and equivalence of fields with respect to quadratic forms. Problem sections are included at the end of each chapter. There are two appendices: the first gives a treatment of Hasse and Witt invariants in the language of Steinberg symbols, and the second contains some more advanced problems in 10 groups, including the u-invariant, reduced and stable Witt rings, and Witt equivalence of fields.
Algebras and Modules II
Author: Idun Reiten
Publisher: American Mathematical Soc.
ISBN: 9780821810767
Category : Mathematics
Languages : en
Pages : 596
Book Description
The 43 research papers demonstrate the application of recent developments in the representation theory of artin algebras and related topics. Among the algebras considered are tame, bi- serial, cellular, factorial hereditary, Hopf, Koszul, non- polynomial growth, pre-projective, Termperley-Lieb, tilted, and quasi-tilted. Other topics include tilting and co-tilting modules and generalizations as *-modules, exceptional sequences of modules and vector bundles, homological conjectives, and vector space categories. The treatment assumes knowledge of non- commutative algebra, including rings, modules, and homological algebra at a graduate or professional level. No index. Member prices are $79 for institutions and $59 for individuals, which also apply to members of the Canadian Mathematical Society. Annotation copyrighted by Book News, Inc., Portland, OR
Publisher: American Mathematical Soc.
ISBN: 9780821810767
Category : Mathematics
Languages : en
Pages : 596
Book Description
The 43 research papers demonstrate the application of recent developments in the representation theory of artin algebras and related topics. Among the algebras considered are tame, bi- serial, cellular, factorial hereditary, Hopf, Koszul, non- polynomial growth, pre-projective, Termperley-Lieb, tilted, and quasi-tilted. Other topics include tilting and co-tilting modules and generalizations as *-modules, exceptional sequences of modules and vector bundles, homological conjectives, and vector space categories. The treatment assumes knowledge of non- commutative algebra, including rings, modules, and homological algebra at a graduate or professional level. No index. Member prices are $79 for institutions and $59 for individuals, which also apply to members of the Canadian Mathematical Society. Annotation copyrighted by Book News, Inc., Portland, OR
Advances in Hopf Algebras
Author: Jeffrey Bergen
Publisher: CRC Press
ISBN: 1000944948
Category : Mathematics
Languages : en
Pages : 341
Book Description
"This remarkable reference covers topics such as quantum groups, Hopf Galois theory, actions and coactions of Hopf algebras, smash and crossed products, and the structure of cosemisimple Hopf algebras. "
Publisher: CRC Press
ISBN: 1000944948
Category : Mathematics
Languages : en
Pages : 341
Book Description
"This remarkable reference covers topics such as quantum groups, Hopf Galois theory, actions and coactions of Hopf algebras, smash and crossed products, and the structure of cosemisimple Hopf algebras. "
Quantum Groups and Noncommutative Geometry
Author: Yuri I. Manin
Publisher: Springer
ISBN: 3319979876
Category : Mathematics
Languages : en
Pages : 122
Book Description
This textbook presents the second edition of Manin's celebrated 1988 Montreal lectures, which influenced a new generation of researchers in algebra to take up the study of Hopf algebras and quantum groups. In this expanded write-up of those lectures, Manin systematically develops an approach to quantum groups as symmetry objects in noncommutative geometry in contrast to the more deformation-oriented approach due to Faddeev, Drinfeld, and others. This new edition contains an extra chapter by Theo Raedschelders and Michel Van den Bergh, surveying recent work that focuses on the representation theory of a number of bi- and Hopf algebras that were first introduced in Manin's lectures, and have since gained a lot of attention. Emphasis is placed on the Tannaka–Krein formalism, which further strengthens Manin's approach to symmetry and moduli-objects in noncommutative geometry.
Publisher: Springer
ISBN: 3319979876
Category : Mathematics
Languages : en
Pages : 122
Book Description
This textbook presents the second edition of Manin's celebrated 1988 Montreal lectures, which influenced a new generation of researchers in algebra to take up the study of Hopf algebras and quantum groups. In this expanded write-up of those lectures, Manin systematically develops an approach to quantum groups as symmetry objects in noncommutative geometry in contrast to the more deformation-oriented approach due to Faddeev, Drinfeld, and others. This new edition contains an extra chapter by Theo Raedschelders and Michel Van den Bergh, surveying recent work that focuses on the representation theory of a number of bi- and Hopf algebras that were first introduced in Manin's lectures, and have since gained a lot of attention. Emphasis is placed on the Tannaka–Krein formalism, which further strengthens Manin's approach to symmetry and moduli-objects in noncommutative geometry.
Quaternion Algebras
Author: John Voight
Publisher: Springer Nature
ISBN: 3030566943
Category : Mathematics
Languages : en
Pages : 877
Book Description
This open access textbook presents a comprehensive treatment of the arithmetic theory of quaternion algebras and orders, a subject with applications in diverse areas of mathematics. Written to be accessible and approachable to the graduate student reader, this text collects and synthesizes results from across the literature. Numerous pathways offer explorations in many different directions, while the unified treatment makes this book an essential reference for students and researchers alike. Divided into five parts, the book begins with a basic introduction to the noncommutative algebra underlying the theory of quaternion algebras over fields, including the relationship to quadratic forms. An in-depth exploration of the arithmetic of quaternion algebras and orders follows. The third part considers analytic aspects, starting with zeta functions and then passing to an idelic approach, offering a pathway from local to global that includes strong approximation. Applications of unit groups of quaternion orders to hyperbolic geometry and low-dimensional topology follow, relating geometric and topological properties to arithmetic invariants. Arithmetic geometry completes the volume, including quaternionic aspects of modular forms, supersingular elliptic curves, and the moduli of QM abelian surfaces. Quaternion Algebras encompasses a vast wealth of knowledge at the intersection of many fields. Graduate students interested in algebra, geometry, and number theory will appreciate the many avenues and connections to be explored. Instructors will find numerous options for constructing introductory and advanced courses, while researchers will value the all-embracing treatment. Readers are assumed to have some familiarity with algebraic number theory and commutative algebra, as well as the fundamentals of linear algebra, topology, and complex analysis. More advanced topics call upon additional background, as noted, though essential concepts and motivation are recapped throughout.
Publisher: Springer Nature
ISBN: 3030566943
Category : Mathematics
Languages : en
Pages : 877
Book Description
This open access textbook presents a comprehensive treatment of the arithmetic theory of quaternion algebras and orders, a subject with applications in diverse areas of mathematics. Written to be accessible and approachable to the graduate student reader, this text collects and synthesizes results from across the literature. Numerous pathways offer explorations in many different directions, while the unified treatment makes this book an essential reference for students and researchers alike. Divided into five parts, the book begins with a basic introduction to the noncommutative algebra underlying the theory of quaternion algebras over fields, including the relationship to quadratic forms. An in-depth exploration of the arithmetic of quaternion algebras and orders follows. The third part considers analytic aspects, starting with zeta functions and then passing to an idelic approach, offering a pathway from local to global that includes strong approximation. Applications of unit groups of quaternion orders to hyperbolic geometry and low-dimensional topology follow, relating geometric and topological properties to arithmetic invariants. Arithmetic geometry completes the volume, including quaternionic aspects of modular forms, supersingular elliptic curves, and the moduli of QM abelian surfaces. Quaternion Algebras encompasses a vast wealth of knowledge at the intersection of many fields. Graduate students interested in algebra, geometry, and number theory will appreciate the many avenues and connections to be explored. Instructors will find numerous options for constructing introductory and advanced courses, while researchers will value the all-embracing treatment. Readers are assumed to have some familiarity with algebraic number theory and commutative algebra, as well as the fundamentals of linear algebra, topology, and complex analysis. More advanced topics call upon additional background, as noted, though essential concepts and motivation are recapped throughout.
Operator Algebras, Mathematical Physics, and Low Dimensional Topology
Author: Richard Herman
Publisher: CRC Press
ISBN: 1439863512
Category : Mathematics
Languages : en
Pages : 334
Book Description
This volume records the proceedings of an international conference that explored recent developments and the interaction between mathematical theory and physical phenomena.
Publisher: CRC Press
ISBN: 1439863512
Category : Mathematics
Languages : en
Pages : 334
Book Description
This volume records the proceedings of an international conference that explored recent developments and the interaction between mathematical theory and physical phenomena.