Pulsars as Astrophysical Laboratories for Nuclear and Particle Physics

Pulsars as Astrophysical Laboratories for Nuclear and Particle Physics PDF Author: Fridolin Weber
Publisher: Routledge
ISBN: 135142095X
Category : Technology & Engineering
Languages : en
Pages : 697

Get Book

Book Description
Pulsars, generally accepted to be rotating neutron stars, are dense, neutron-packed remnants of massive stars that blew apart in supernova explosions. They are typically about 10 kilometers across and spin rapidly, often making several hundred rotations per second. Depending on star mass, gravity compresses the matter in the cores of pulsars up to more than ten times the density of ordinary atomic nuclei, thus providing a high-pressure environment in which numerous particle processes, from hyperon population to quark deconfinement to the formation of Boson condensates, may compete with each other. There are theoretical suggestions of even more ""exotic"" processes inside pulsars, such as the formation of absolutely stable strange quark matter, a configuration of matter even more stable than the most stable atomic nucleus, ^T56Fe. In the latter event, pulsars would be largely composed of pure quark matter, eventually enveloped in nuclear crust matter. These features combined with the tremendous recent progress in observational radio and x-ray astronomy make pulsars nearly ideal probes for a wide range of physical studies, complementing the quest of the behavior of superdense matter in terrestrial collider experiments. Written by an eminent author, Pulsars as Astrophysical Laboratories for Nuclear and Particle Physics gives a reliable account of the present status of such research, which naturally is to be performed at the interface between nuclear physics, particle physics, and Einstein's theory of relativity.

Pulsars as Astrophysical Laboratories for Nuclear and Particle Physics

Pulsars as Astrophysical Laboratories for Nuclear and Particle Physics PDF Author: Fridolin Weber
Publisher: Routledge
ISBN: 135142095X
Category : Technology & Engineering
Languages : en
Pages : 697

Get Book

Book Description
Pulsars, generally accepted to be rotating neutron stars, are dense, neutron-packed remnants of massive stars that blew apart in supernova explosions. They are typically about 10 kilometers across and spin rapidly, often making several hundred rotations per second. Depending on star mass, gravity compresses the matter in the cores of pulsars up to more than ten times the density of ordinary atomic nuclei, thus providing a high-pressure environment in which numerous particle processes, from hyperon population to quark deconfinement to the formation of Boson condensates, may compete with each other. There are theoretical suggestions of even more ""exotic"" processes inside pulsars, such as the formation of absolutely stable strange quark matter, a configuration of matter even more stable than the most stable atomic nucleus, ^T56Fe. In the latter event, pulsars would be largely composed of pure quark matter, eventually enveloped in nuclear crust matter. These features combined with the tremendous recent progress in observational radio and x-ray astronomy make pulsars nearly ideal probes for a wide range of physical studies, complementing the quest of the behavior of superdense matter in terrestrial collider experiments. Written by an eminent author, Pulsars as Astrophysical Laboratories for Nuclear and Particle Physics gives a reliable account of the present status of such research, which naturally is to be performed at the interface between nuclear physics, particle physics, and Einstein's theory of relativity.

Pulsars as Physics Laboratories

Pulsars as Physics Laboratories PDF Author: Roger D. Blandford
Publisher: Oxford University Press
ISBN: 9780198539834
Category : Science
Languages : en
Pages : 210

Get Book

Book Description
The discovery 25 years ago of the remarkable astronomical objects known as pulsars--and their identification as neutron stars--fulfilled a prediction made more than 30 years earlier. Over 550 pulsars are now known, almost all detected at radio frequencies which capture their distinctive bursts of electromagnetic energy. These pulse periods range from 1.5 milliseconds to several seconds. Most pulsars are single neutron stars but they can also exist in a binary orbit with a companion. Observations have revealed a wealth of detail about the structure and evolution of pulsars and the pulse-emission process, giving new insight into the behavior of matter in the presence of extreme gravitational and electromagnetic fields. In fact, pulsars have unique physical properties which make them nearly ideal as probes for a wide range of physical studies. This volume gathers together up-to-date findings in this area, representing a valuable resource for theoretical and particle physicists as well astrophysicists and astronomers. The contributors are recognized experts in the field, and include such well-known authorities as Joe Taylor who describes his Nobel-Prize winning work (Physics 1993).

Pulsars as Astrophysical Laboratories for Nuclear and Particle Physics

Pulsars as Astrophysical Laboratories for Nuclear and Particle Physics PDF Author: Fridolin Weber
Publisher: Routledge
ISBN: 1351420941
Category : Technology & Engineering
Languages : en
Pages : 588

Get Book

Book Description
Pulsars, generally accepted to be rotating neutron stars, are dense, neutron-packed remnants of massive stars that blew apart in supernova explosions. They are typically about 10 kilometers across and spin rapidly, often making several hundred rotations per second. Depending on star mass, gravity compresses the matter in the cores of pulsars up to more than ten times the density of ordinary atomic nuclei, thus providing a high-pressure environment in which numerous particle processes, from hyperon population to quark deconfinement to the formation of Boson condensates, may compete with each other. There are theoretical suggestions of even more ""exotic"" processes inside pulsars, such as the formation of absolutely stable strange quark matter, a configuration of matter even more stable than the most stable atomic nucleus, ^T56Fe. In the latter event, pulsars would be largely composed of pure quark matter, eventually enveloped in nuclear crust matter. These features combined with the tremendous recent progress in observational radio and x-ray astronomy make pulsars nearly ideal probes for a wide range of physical studies, complementing the quest of the behavior of superdense matter in terrestrial collider experiments. Written by an eminent author, Pulsars as Astrophysical Laboratories for Nuclear and Particle Physics gives a reliable account of the present status of such research, which naturally is to be performed at the interface between nuclear physics, particle physics, and Einstein's theory of relativity.

Neutron Stars and Pulsars

Neutron Stars and Pulsars PDF Author: Werner Becker
Publisher: Springer Science & Business Media
ISBN: 354076965X
Category : Science
Languages : en
Pages : 702

Get Book

Book Description
Neutron stars are the most compact astronomical objects in the universe which are accessible by direct observation. Studying neutron stars means studying physics in regimes unattainable in any terrestrial laboratory. Understanding their observed complex phenomena requires a wide range of scientific disciplines, including the nuclear and condensed matter physics of very dense matter in neutron star interiors, plasma physics and quantum electrodynamics of magnetospheres, and the relativistic magneto-hydrodynamics of electron-positron pulsar winds interacting with some ambient medium. Not to mention the test bed neutron stars provide for general relativity theories, and their importance as potential sources of gravitational waves. It is this variety of disciplines which, among others, makes neutron star research so fascinating, not only for those who have been working in the field for many years but also for students and young scientists. The aim of this book is to serve as a reference work which not only reviews the progress made since the early days of pulsar astronomy, but especially focuses on questions such as: "What have we learned about the subject and how did we learn it?", "What are the most important open questions in this area?" and "What new tools, telescopes, observations, and calculations are needed to answer these questions?". All authors who have contributed to this book have devoted a significant part of their scientific careers to exploring the nature of neutron stars and understanding pulsars. Everyone has paid special attention to writing educational comprehensive review articles with the needs of beginners, students and young scientists as potential readers in mind. This book will be a valuable source of information for these groups.

The Physics of Pulsars

The Physics of Pulsars PDF Author: Allen M. Lenchek
Publisher: Gordon & Breach Publishing Group
ISBN:
Category : Pulsars
Languages : en
Pages : 200

Get Book

Book Description


Compact Stars

Compact Stars PDF Author: Norman K. Glendenning
Publisher: Springer Science & Business Media
ISBN: 1468404911
Category : Science
Languages : en
Pages : 402

Get Book

Book Description
A whole decades research collated, organised and synthesised into one single book! Following a 60-page review of the seminal treatises of Misner, Thorne, Wheeler and Weinberg on general relativity, Glendenning goes on to explore the internal structure of compact stars, white dwarfs, neutron stars, hybrids, strange quark stars, both the counterparts of neutron stars as well as of dwarfs. This is a self-contained treatment and will be of interest to graduate students in physics and astrophysics as well as others entering the field.

Nuclear Theory in the Age of Multimessenger Astronomy

Nuclear Theory in the Age of Multimessenger Astronomy PDF Author: Omar Benhar
Publisher: CRC Press
ISBN: 104004476X
Category : Science
Languages : en
Pages : 481

Get Book

Book Description
Over the last decade, astrophysical observations of neutron stars — both as isolated and binary sources — have paved the way for a deeper understanding of the structure and dynamics of matter beyond nuclear saturation density. The mapping between astrophysical observations and models of dense matter based on microscopic dynamics has been poorly investigated so far. However, the increased accuracy of present and forthcoming observations may be instrumental in resolving the degeneracy between the predictions of different equations of state. Astrophysical and laboratory probes have the potential to paint to a new coherent picture of nuclear matter — and, more generally, strong interactions — over the widest range of densities occurring in the Universe. This book provides a self-contained account of neutron star properties, microscopic nuclear dynamics and the recent observational developments in multimessenger astronomy. It also discusses the unprecedented possibilities to shed light on long standing and fundamental issues, such as the validity of the description of matter in terms of pointlike baryons and leptons and the appearance of deconfined quarks in the high density regime. It will be of interest to researchers and advanced PhD students working in the fields of Astrophysics, Gravitational Physics, Nuclear Physics and Particle Physics. Key Features: Reviews state-of-the-art theoretical and experimental developments Self-contained and cross-disciplinary While being devoted to a very lively and fast developing field, the book fundamentally addresses methodological issues. Therefore, it will not be subject to fast obsolescence. Omar Benhar is an INFN Emeritus Research Director, and has been teaching Relativistic Quantum Mechanics, Quantum Electrodynamics and Structure of Compact Stars at “Sapienza” University of Rome for over twenty years. He has worked extensively in the United States, and since 2013 has served as an adjunct professor at the Center for Neutrino Physics of Virginia Polytechnic Institute and State University. Prof. Benhar has authored or co-authored three textbooks on Relativistic Quantum Mechanics, Gauge Theories, and Structure and Dynamics of Compact Stars, and published more than one hundred scientific papers on the theory of many-particle systems, the structure of compact stars and the electroweak interactions of nuclei. Alessandro Lovato is a physicist at Argonne National Laboratory and an INFN researcher in Trento. His research in theoretical nuclear physics focuses on consistently modeling the self-emerging properties of atomic nuclei and neutron-star matter in terms of the microscopic interactions among the constituent protons and neutrons. He has co-authored more than eighty scientific publications on the theory of many-particle systems, the structure of compact stars, and the electroweak interactions of nuclei. He is at the forefront of high-performance computing applied to solving the quantum many-body problem. Andrea Maselli is an Associate Professor at the Gran Sasso Science Institute, in L’Aquila, where he teaches Gravitation and Cosmology and Physics of Black Hole. His research focuses on strong gravity, which plays a crucial role in many astrophysical phenomena involving black hole and neutron stars, representing natural laboratories to test fundamental physics. Prof. Maselli has co-authored more than eighty scientific papers on the modelling of black holes and neutron stars in General Relativity and extension thereof, their gravitational wave emission, and on tests of gravity in the strong filed regime. He is active in various collaborations aimed at developing next generation of gravitational wave detectors, such as the LISA satellite, the Einstein Telescope, and the Lunar Gravitational Wave Antenna. Francesco Pannarale is an Associate Professor at “Sapienza” Univeristy of Rome, where he teaches Gravitational Waves, Compact Objects and Black Holes, Computing Methods for Physics, and Electromagnetism. His research interests are in gravitational-wave physics and multimessenger astronomy, and they range from modelling compact binary sources to data analysis. He has co-authored over one hundred and eighty scientific publications and was at the forefront of the joint observation of GW170817 and GRB 170817A. He is currently serving as co-chair of the LIGO-Virgo-KAGRA Data Analysis Council.

Nuclear Physics

Nuclear Physics PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309173663
Category : Science
Languages : en
Pages : 222

Get Book

Book Description
Dramatic progress has been made in all branches of physics since the National Research Council's 1986 decadal survey of the field. The Physics in a New Era series explores these advances and looks ahead to future goals. The series includes assessments of the major subfields and reports on several smaller subfields, and preparation has begun on an overview volume on the unity of physics, its relationships to other fields, and its contributions to national needs. Nuclear Physics is the latest volume of the series. The book describes current activity in understanding nuclear structure and symmetries, the behavior of matter at extreme densities, the role of nuclear physics in astrophysics and cosmology, and the instrumentation and facilities used by the field. It makes recommendations on the resources needed for experimental and theoretical advances in the coming decade.

Probes of Multimessenger Astrophysics

Probes of Multimessenger Astrophysics PDF Author: Maurizio Spurio
Publisher: Springer
ISBN: 3319968548
Category : Science
Languages : en
Pages : 591

Get Book

Book Description
"I have taught from and enjoyed the first edition of the book. The selection of topics is the best I've seen. Maurizio Spurio gives very clear presentations using a generous amount of observational data. " James Matthews (Louisiana State University) This is the second edition of an introduction to “multi-messenger” astrophysics. It covers the many different aspects connecting particle physics with astrophysics and cosmology and introduces high-energy astrophysics using different probes: the electromagnetic radiation, with techniques developed by traditional astronomy; charged cosmic rays, gamma-rays and neutrinos, with methods developed in high-energy laboratories; and gravitational waves, recently observed using laser interferometers. The book offers a comprehensive and systematic approach to the theoretical background and the experimental aspects of the study of the high-energy universe. The breakthrough discovery of gravitational waves motivated this new edition of the book, to offer a more global and multimessenger vision of high-energy astrophysics. This second edition is updated and enriched with substantial new materials also deriving from the results obtained at the LIGO/Virgo observatories. For the first time it is now possible to draw the connection between gravitational waves, traditional astronomical observations and other probes (in particular, gamma-rays and neutrinos). The book draws on the extensive courses of Professor Maurizio Spurio at the University of Bologna and it is aimed at graduate students and post-graduate researchers with a basic understanding of particle and nuclear physics. It will also be of interest to particle physicists working in accelerator/collider physics who are keen to understand the mechanisms of the largest accelerators in the Universe.

Millisecond Pulsars

Millisecond Pulsars PDF Author: Sudip Bhattacharyya
Publisher: Springer Nature
ISBN: 3030851982
Category : Science
Languages : en
Pages : 334

Get Book

Book Description
This book includes nine chapters written by internationally recognized experts, covering all aspects of millisecond pulsars in one concise and cohesive volume. These aspects include pulsations powered by stellar spin, accretion and thermonuclear burning of accreted matter, their physics and utility, stellar evolution and the extreme physics of super-dense stellar cores. The book includes substantial background material as well as recent theoretical and multi-wavelength observational results. The volume will thus be useful for professional astronomers and graduate students alike. What is the behavior of the strong nuclear interaction, and what are the matter constituents at ultrahigh densities in neutron star cores? How do old neutron stars in binaries evolve? How does their magnetosphere interact with the surrounding plasma to accelerate particles and emit radiation observed at all wavelengths? These are just a few of the questions that millisecond pulsars are helping us answer and will settle in the near future with the next generation of instruments. Such quickly rotating, highly magnetized neutron stars are remarkable natural laboratories that allow us to investigate the fundamental constituents of matter and their interactions under extreme conditions that cannot be reproduced in terrestrial laboratories.